\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9.1 - 2D Boolean Operations on Nef Polygons Embedded on the Sphere
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
CGAL::Nef_polyhedron_S2< Traits >::SHalfloop Class Reference

#include <CGAL/Nef_polyhedron_S2.h>

Definition

A sloop is a great circle on a sphere.

A shalfloop is an oriented sloop. It is always paired with a shalfloop whose supporting Sphere_circle is pointing in the opposite direction. The twin() member function returns this shalfloop of opposite orientation. Each Nef_polyhedron_S2 can only have one sloop (resp. two shalfloops).

The figure below depicts the relationship between a shalfloop and sfaces on a sphere map.

shalfloopB.png
Incidences of an SHalfloop
Creation

There is no need for a user to create a SHalfloop explicitly. The class Nef_polyhedron_S2<Traits> manages the needed shalfloops internally.

See Also
CGAL::Nef_polyhedron_S2::SFace
CGAL::Nef_polyhedron_S2::Sphere_circle

Types

The following types are the same as in Nef_polyhedron_S2<Traits>.

typedef unspecified_type Mark
 type of mark.
 
typedef unspecified_type Sphere_circle
 sphere circle type stored in SHalfloop.
 
typedef unspecified_type SHalfloop_const_handle
 const handle to SHalfloop.
 
typedef unspecified_type SFace_const_handle
 const handle to SFace.
 

Operations

const Markmark () const
 the mark of the halfloop.
 
const Sphere_circlecircle () const
 the sphere circle of the halfloop.
 
SHalfloop_const_handle twin () const
 the twin of the halfloop.
 
SFace_const_handle incident_sface () const
 the incident sface of the halfloop.