\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9.1 - Number Types
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
CGAL Number Types

Classes

class  CGAL::Interval_nt< Protected >
 The class Interval_nt provides an interval arithmetic number type. More...
 
class  CGAL::Lazy_exact_nt< NT >
 An object of the class Lazy_exact_nt<NT> is able to represent any real embeddable number which NT is able to represent. More...
 
class  CGAL::MP_Float
 An object of the class MP_Float is able to represent a floating point value with arbitrary precision. More...
 
class  CGAL::Number_type_checker< NT1, NT2, Comparator >
 Number_type_checker is a number type whose instances store two numbers of types NT1 and NT2. More...
 
class  CGAL::Quotient< NT >
 An object of the class Quotient<NT> is an element of the field of quotients of the integral domain type NT. More...
 

Typedefs

typedef Interval_nt< false > CGAL::Interval_nt_advanced
 This typedef (at namespace CGAL scope) exists for backward compatibility, as well as removing the need to remember the Boolean value for the template parameter.
 
typedef unspecified_type CGAL::Exact_integer
 Exact_integer is an exact integer number type. More...
 
typedef unspecified_type CGAL::Exact_rational
 Exact_rational is an exact rational number type, constructible from double. More...
 

Typedef Documentation

Exact_integer is an exact integer number type.

It is a typedef of another number type. Its exact definition depends on the availability the third-party libraries GMP, CORE, and LEDA. CGAL must be configured with at least one of those libraries.

Is Model Of:

EuclideanRing

RealEmbeddable

#include <CGAL/Exact_integer.h>

Exact_rational is an exact rational number type, constructible from double.

It is a typedef of another number type. Its exact definition depends on the availability the third-party libraries GMP, CORE, and LEDA. CGAL must be configured with at least one of those libraries.

Is Model Of:

Field

RealEmbeddable

Fraction

FromDoubleConstructible

#include <CGAL/Exact_rational.h>