\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9.1 - 2D Polyline Simplification
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
PolylineSimplificationVertexBase_2 Concept Reference

Definition

The polyline simplification algorithm stores in the vertices whether a vertex can be removed, and the cost of the removal.

Refines:
TriangulationVertexBase_2

Types

Defines the same types as the TriangulationVertexBase_2 concept

Has Models:
CGAL::Polyline_simplification_2::Vertex_base_2<Vb>
See Also
TriangulationFaceBase_2
CGAL::Constrained_triangulation_plus_2<Tr>

Public Types

typedef unspecified_type FT
 A number type which must be the same as the FT of the geometric traits class of the triangulation.
 

Access Functions

bool is_removable () const
 indicates whether the vertex can be removed.
 
void set_removable (bool b)
 allows to set whether the vertex can be removed.
 
FT cost () const
 returns the cost of the vertex removal.
 
void set_cost (const FT &ft)
 allows to set the cost of the vertex removal.