\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9.1 - Polynomial
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
PolynomialTraits_d::TotalDegree Concept Reference

Definition

This AdaptableUnaryFunction computes the total degree of a PolynomialTraits_d::Polynomial_d.

Given a (multivariate) monomial the sum of all appearing exponents is the total degree of this monomial. The total degree of a polynomial \( p\) is the maximum of the total degrees of all appearing (multivariate) monomials in \( p\).

For instance the total degree of \( p = x_0^2x_1^3+x_1^4\) is \( 5\).

The total degree of the zero polynomial is set to \( 0\). From the mathematical point of view this should be \( -\infty\), but this would imply an inconvenient return type.

Refines:

AdaptableUnaryFunction

CopyConstructible

DefaultConstructible

See Also
Polynomial_d
PolynomialTraits_d
PolynomialTraits_d::Degree
PolynomialTraits_d::DegreeVector

Types

typedef int result_type
 
typedef
PolynomialTraits_d::Polynomial_d 
argument_type
 

Operations

result_type operator() (argument_type p)
 Computes the total degree of \( p\).