\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9 - 2D and 3D Linear Geometry Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Kernel::ComputeArea_3 Concept Reference

Definition

Refines:
AdaptableFunctor (with one argument)
See Also
CGAL::Triangle_3<Kernel>

Operations

A model of this concept must provide:

Kernel::FT operator() (const Kernel::Triangle_3 &t)
 returns the area of t. More...
 
Kernel::FT operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q, const Kernel::Point_3 &r)
 returns the area of the triangle p, q, r. More...
 

Member Function Documentation

Kernel::FT Kernel::ComputeArea_3::operator() ( const Kernel::Triangle_3 t)

returns the area of t.

This requires that Kernel::FT supports the sqrt operation.

Kernel::FT Kernel::ComputeArea_3::operator() ( const Kernel::Point_3 p,
const Kernel::Point_3 q,
const Kernel::Point_3 r 
)

returns the area of the triangle p, q, r.

This requires that Kernel::FT supports the sqrt operation.