\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9 - 2D and 3D Linear Geometry Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Kernel::ConstructIsoRectangle_2 Concept Reference

Definition

Refines:
AdaptableFunctor (with two arguments)
See Also
CGAL::Iso_rectangle_2<Kernel>

Operations

A model of this concept must provide:

Kernel::Iso_rectangle_2 operator() (const Kernel::Point_2 &p, const Kernel::Point_2 &q)
 introduces an iso-oriented rectangle with diagonal opposite vertices p and q such that p is the lexicographically smallest point in the rectangle.
 
Kernel::Iso_rectangle_2 operator() (const Kernel::Point_2 &p, const Kernel::Point_2 &q, int)
 introduces an iso-oriented rectangle with diagonal opposite vertices p and q. More...
 
Kernel::Iso_rectangle_2 operator() (const Kernel::Point_2 &left, const Kernel::Point_2 &right, const Kernel::Point_2 &bottom, const Kernel::Point_2 &top)
 introduces an iso-oriented rectangle fo whose minimal \( x\) coordinate is the one of left, the maximal \( x\) coordinate is the one of right, the minimal \( y\) coordinate is the one of bottom, the maximal \( y\) coordinate is the one of top.
 

Member Function Documentation

Kernel::Iso_rectangle_2 Kernel::ConstructIsoRectangle_2::operator() ( const Kernel::Point_2 p,
const Kernel::Point_2 q,
int   
)

introduces an iso-oriented rectangle with diagonal opposite vertices p and q.

The int argument value is only used to distinguish the two overloaded functions.

Precondition
p.x()<=q.x() and p.y()<=q.y().