CGAL 4.9 - 3D Periodic Triangulations
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Periodic_3TriangulationTraits_3 Concept Reference

Definition

The concept Periodic_3TriangulationTraits_3 is the first template parameter of the class Periodic_3_triangulation_3. It refines the concept TriangulationTraits_3 from the CGAL 3D Triangulations. It redefines the geometric objects, predicates and constructions to work with point-offset pairs. In most cases the offsets will be (0,0,0) and the predicates from TriangulationTraits_3 can be used directly. For efficiency reasons we maintain for each functor the version without offsets.

Refines:
TriangulationTraits_3
Has Models:
CGAL::Periodic_3_triangulation_traits_3

In addition to the requirements described for the traits class TriangulationTraits_3, the geometric traits class of a Periodic triangulation must fulfill the following requirements.

Types

typedef unspecified_type Point_3
 The point type. More...
 
typedef unspecified_type Vector_3
 The vector type. More...
 
typedef unspecified_type Periodic_3_offset_3
 The offset type. More...
 
typedef unspecified_type Iso_cuboid_3
 A type representing an axis-aligned cuboid. More...
 

The following three types represent geometric primitives in R3.

They are required to provide functions converting primitives from T3c to R3, i.e. constructing representatives in R3.

typedef unspecified_type Segment_3
 A segment type. More...
 
typedef unspecified_type Triangle_3
 A triangle type. More...
 
typedef unspecified_type Tetrahedron_3
 A tetrahedron type. More...
 
typedef unspecified_type Compare_xyz_3
 A predicate object that must provide the function operators. More...
 
typedef unspecified_type Orientation_3
 A predicate object that must provide the function operators. More...
 

Note that the traits must provide exact constructions in order to guarantee exactness of the following construction functors.

typedef unspecified_type Construct_point_3
 A constructor object that must provide the function operator. More...
 
typedef unspecified_type Construct_segment_3
 A constructor object that must provide the function operators. More...
 
typedef unspecified_type Construct_triangle_3
 A constructor object that must provide the function operators. More...
 
typedef unspecified_type Construct_tetrahedron_3
 A constructor object that must provide the function operators. More...
 

Creation

 Periodic_3_triangulation_traits_3 ()
 Default constructor.
 
 Periodic_3_triangulation_traits_3 (const Periodic_triangulation_traits_3 &tr)
 Copy constructor.
 

Access Functions

void set_domain (Iso_cuboid_3 domain)
 Set the size of the fundamental domain. More...
 

Operations

The following functions give access to the predicate and construction objects:

Compare_xyz_3 compare_xyz_3_object ()
 
Orientation_3 orientation_3_object ()
 
Construct_segment_3 construct_segment_3_object ()
 
Construct_triangle_3 construct_triangle_3_object ()
 
Construct_tetrahedron_3 construct_tetrahedron_3_object ()
 

Member Typedef Documentation

A predicate object that must provide the function operators.

Comparison_result operator()(Point_3 p, Point_3 q),

which returns EQUAL if the two points are equal and

Comparison_result operator()(Point_3 p, Point_3 q, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q),

which returns EQUAL if the two point-offset pairs are equal. Otherwise it must return a consistent order for any two points chosen in a same line.

Precondition
p, q lie inside the domain.

A constructor object that must provide the function operator.

Point_3 operator()(Point_3 p, Periodic_3_offset_3 o_p),

which constructs a point from a point-offset pair.

Precondition
p lies inside the domain.

A constructor object that must provide the function operators.

Segment_3 operator()(Point_3 p, Point_3 q),

which constructs a segment from two points and

Segment_3 operator()(Point_3 p, Point_3 q, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q),

which constructs a segment from two point-offset pairs.

Precondition
p, q lie inside the domain.

A constructor object that must provide the function operators.

Tetrahedron_3 operator()(Point_3 p, Point_3 q, Point_3 r, Point_3 s),

which constructs a tetrahedron from four points and

Tetrahedron_3 operator()(Point_3 p, Point_3 q, Point_3 r, Point_3 s, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r, Periodic_3_offset_3 o_s),

which constructs a tetrahedron from four point-offset pairs.

Precondition
p, q, r, s lie inside the domain.

A constructor object that must provide the function operators.

Triangle_3 operator()(Point_3 p, Point_3 q, Point_3 r ),

which constructs a triangle from three points and

Triangle_3 operator()(Point_3 p, Point_3 q, Point_3 r, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r),

which constructs a triangle from three point-offset pairs.

Precondition
p, q, r lie inside the domain.

A type representing an axis-aligned cuboid.

It must be a model of Kernel::Iso_cuboid_3.

A predicate object that must provide the function operators.

Orientation operator()(Point_3 p, Point_3 q, Point_3 r, Point_3 s),

which returns POSITIVE, if s lies on the positive side of the oriented plane h defined by p, q, and r, returns NEGATIVE if s lies on the negative side of h, and returns COPLANAR if s lies on h and

Orientation operator()(Point_3 p, Point_3 q, Point_3 r, Point_3 s, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r, Periodic_3_offset_3 o_s),

which returns POSITIVE, if the point-offset pair (s,o_s) lies on the positive side of the oriented plane h defined by (p,o_p), (q,o_q), and (r,o_r), returns NEGATIVE if (s,o_s) lies on the negative side of h, and returns COPLANAR if (s,o_s) lies on h.

Precondition
p, q, r, s lie inside the domain.

The offset type.

It must be a model of the concept Periodic_3Offset_3.

The point type.

It must be a model of Kernel::Point_3.

A segment type.

It must be a model of Kernel::Segment_3.

A triangle type.

It must be a model of Kernel::Triangle_3.

The vector type.

It must be a model of Kernel::Vector_3.

Member Function Documentation

void Periodic_3TriangulationTraits_3::set_domain ( Iso_cuboid_3  domain)

Set the size of the fundamental domain.

This is necessary to evaluate predicates correctly.

Precondition
domain represents a cube.