\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9 - CGAL and Solvers
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
SparseLinearAlgebraTraits_d Concept Reference

Definition

The concept SparseLinearAlgebraTraits_d is used to solve sparse linear systems A \( \times \) X = B.

Has Models:
CGAL::Eigen_solver_traits<T>

Concepts

conceptMatrix
 SparseLinearAlgebraTraits_d::Matrix is a concept of a sparse matrix class. More...
 
conceptVector
 SparseLinearAlgebraTraits_d::Vector is a concept of a vector that can be multiplied by a sparse matrix. More...
 

Types

typedef unspecified_type Matrix
 
typedef unspecified_type Vector
 
typedef unspecified_type NT
 

Creation

 SparseLinearAlgebraTraits_d ()
 Default constructor.
 

Operations

bool linear_solver (const Matrix &A, const Vector &B, Vector &X, NT &D)
 Solve the sparse linear system A \( \times \) X = B. More...
 

Member Function Documentation

bool SparseLinearAlgebraTraits_d::linear_solver ( const Matrix A,
const Vector B,
Vector X,
NT D 
)

Solve the sparse linear system A \( \times \) X = B.

Return true on success. The solution is then (1/D) \( \times \) X.

Precondition
A.row_dimension() == B.dimension()
A.column_dimension() == X.dimension()