\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9 - 2D Placement of Streamlines
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
VectorField_2 Concept Reference

Definition

The concept VectorField_2 describes the set of requirements for the first template parameter of the class CGAL::Stream_lines_2<VectorField_2,Integrator_2>. This concept provides the types of the geometric primitives used in the placement of streamlines and some functions for answering different queries.

Has Models:

CGAL::Regular_grid_2<StreamLinesTraits_2>

CGAL::Triangular_field_2<StreamLinesTraits_2>

Types

typedef unspecified_type Geom_traits
 The traits class.
 
typedef unspecified_type FT
 The scalar type.
 
typedef unspecified_type Point_2
 The point type.
 
typedef unspecified_type Vector_2
 The vector type.
 

Creation

 VectorField_2 ()
 Any constructor has to allow the user to fill the vector values, i.e., assign a vector to each position within the domain.
 

Query Functions

Geom_traits::Iso_rectangle_2 bbox ()
 returns the bounding box of the whole domain.
 
std::pair< Vector_2, FTget_field (Point_2 p)
 returns the vector field value and the local density. More...
 
bool is_in_domain (Point_2 p)
 returns true if the point p is inside the domain boundaries, false otherwise.
 
FT get_integration_step (Point_2 p)
 returns the integration step at the point p, i.e., the distance between p and the next point in the polyline. More...
 

Member Function Documentation

std::pair<Vector_2,FT> VectorField_2::get_field ( Point_2  p)

returns the vector field value and the local density.

Precondition
is_in_domain(p) must be true.
FT VectorField_2::get_integration_step ( Point_2  p)

returns the integration step at the point p, i.e., the distance between p and the next point in the polyline.

Precondition
is_in_domain(p) must be true.