\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0.1 - Geometric Object Generators
CGAL::Random_points_on_circle_2< Point_2, Creator > Class Template Reference

#include <CGAL/point_generators_2.h>

Definition

The class Random_points_on_circle_2 is an input iterator creating points uniformly distributed on a circle.

The default Creator is Creator_uniform_2<Kernel_traits<Point_2>Kernel::RT,Point_2>. The generated points are computed using floating point arithmetic, whatever the Kernel is, thus they are on the circle/sphere only up to rounding errors.

Is Model Of:

InputIterator

PointGenerator

See also
std::copy_n()
CGAL::Counting_iterator
CGAL::Points_on_segment_2<Point_2>
CGAL::Random_points_in_disc_2<Point_2, Creator>
CGAL::Random_points_in_square_2<Point_2, Creator>
CGAL::Random_points_in_triangle_2<Point_2, Creator>
CGAL::Random_points_on_segment_2<Point_2, Creator>
CGAL::Random_points_on_square_2<Point_2, Creator>
CGAL::Random_points_on_sphere_3<Point_3, Creator>
std::random_shuffle
Examples:
Generator/random_segments1.cpp.

Types

typedef std::input_iterator_tag iterator_category
 
typedef Point_2 value_type
 
typedef std::ptrdiff_t difference_type
 
const typedef Point_2pointer
 
const typedef Point_2reference
 
 Random_points_on_circle_2 (double r, Random &rnd=get_default_random())
 creates an input iterator g generating points of type Point_2 uniformly distributed on the circle with radius \( r\), i.e. \( |*g| == r\). More...
 

Constructor & Destructor Documentation

◆ Random_points_on_circle_2()

template<typename Point_2, typename Creator>
CGAL::Random_points_on_circle_2< Point_2, Creator >::Random_points_on_circle_2 ( double  r,
Random rnd = get_default_random() 
)

creates an input iterator g generating points of type Point_2 uniformly distributed on the circle with radius \( r\), i.e. \( |*g| == r\).

A single random number is needed from rnd for each point.