\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0.1 - 2D and 3D Linear Geometry Kernel
Kernel::ComputeApproximateAngle_3 Concept Reference

Definition

Operations

A model of this concept must provide:

Kernel::FT operator() (const Kernel::Vector_3 &u, const Kernel::Vector_3 &v) const
 returns an approximation of the angle between u and v. More...
 
Kernel::FT operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q, const Kernel::Point_3 &r) const
 returns an approximation of the angle between p-q and r-q. More...
 

Member Function Documentation

◆ operator()() [1/2]

Kernel::FT Kernel::ComputeApproximateAngle_3::operator() ( const Kernel::Vector_3 u,
const Kernel::Vector_3 v 
) const

returns an approximation of the angle between u and v.

The angle is given in degrees.

Precondition
u and v are not equal to the null vector.

◆ operator()() [2/2]

Kernel::FT Kernel::ComputeApproximateAngle_3::operator() ( const Kernel::Point_3 p,
const Kernel::Point_3 q,
const Kernel::Point_3 r 
) const

returns an approximation of the angle between p-q and r-q.

The angle is given in degrees.

Precondition
p and r are not equal to q.