\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0.1 - 2D and 3D Linear Geometry Kernel

Definition

Refines:
AdaptableFunctor (with one argument)

Operations

A model of this concept must provide:

CGAL::Bbox_3 operator() (const Kernel::Circle_3 &c)
 returns a bounding box of c.
 
CGAL::Bbox_3 operator() (const Kernel::Point_3 &p)
 returns a bounding box of p.
 
CGAL::Bbox_3 operator() (const Kernel::Segment_3 &s)
 returns a bounding box of s.
 
CGAL::Bbox_3 operator() (const Kernel::Triangle_3 &t)
 returns a bounding box of t.
 
CGAL::Bbox_3 operator() (const Kernel::Tetrahedron_3 &t)
 returns a bounding box of t.
 
CGAL::Bbox_3 operator() (const Kernel::Iso_Cuboid_3 &i)
 returns a bounding box of i.
 
CGAL::Bbox_3 operator() (const Kernel::Sphere_3 &s)
 returns a bounding box of s.