CGAL 5.0.1 - Linear and Quadratic Programming Solver
|
#include <CGAL/QP_models.h>
An object of class Quadratic_program_from_mps
describes a convex quadratic program of the general form.
\( \newcommand{\qprel}{\gtreqless} \newcommand{\qpx}{\mathbf{x}} \newcommand{\qpl}{\mathbf{l}} \newcommand{\qpu}{\mathbf{u}} \newcommand{\qpc}{\mathbf{c}} \newcommand{\qpb}{\mathbf{b}} \newcommand{\qpy}{\mathbf{y}} \newcommand{\qpw}{\mathbf{w}} \newcommand{\qplambda}{\mathbf{\lambda}} \)
\begin{eqnarray*} \mbox{(QP)}& \mbox{minimize} & \qpx^{T}D\qpx+\qpc^{T}\qpx+c_0 \\ &\mbox{subject to} & A\qpx\qprel \qpb, \\ & & \qpl \leq \qpx \leq \qpu \end{eqnarray*}
in \( n\) real variables \( \qpx=(x_0,\ldots,x_{n-1})\).
Here,
\( \qprel\) is an \( m\)-dimensional vector of relations from \( \{\leq, =, \geq\}\),
\( \qpu\) is an \( n\)-dimensional vector of upper bounds for \( \qpx\), where \( u_j\in\mathbb{R}\cup\{\infty\}\) for all \( j\)
\( D\) is a symmetric positive-semidefinite \( n\times n\) matrix (the quadratic objective function),
\( c_0\) is a constant.
If \( D=0\), the program is a linear program; if the variable bounds are \( x\geq 0\), we have a nonnegative program.
The program data are read from an input stream in MPSFormat
. This is a commonly used format for encoding linear and quadratic programs that is understood by many solvers. All values are expected to be readable into type NT
. The constructed program can be further manipulated by using the set-methods below.
Example
QP_solver/first_qp_from_mps.cpp
QP_solver/first_lp_from_mps.cpp
QP_solver/first_nonnegative_qp_from_mps.cpp
QP_solver/first_nonnegative_lp_from_mps.cpp
Quadratic_program<NT>
Quadratic_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it>
Linear_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, C_it>
Nonnegative_quadratic_program_from_iterators<A_it, B_it, R_it, D_it, C_it>
Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it>
Types | |
typedef unspecified_type | NT |
The number type of the program entries. | |
Creation | |
Quadratic_program_from_mps (std::istream &in) | |
reads qp from the input stream in . | |
Operations | |
bool | is_valid () const |
returns true if and only if an MPS-encoded quadratic program could be extracted from the input stream. | |
const std::string & | get_error () const |
if !qp .is_valid() , this method returns an error message explaining why the input does not conform to the MPSFormat . | |
const std::string & | variable_name_by_index (int j) const |
returns the name of the \( j\)-th variable. More... | |
int | variable_index_by_name (const std::string &name) const |
returns the index of the variable with name name . More... | |
const std::string & | constraint_name_by_index (int i) const |
returns the name of the \( i\)-th constraint. More... | |
int | constraint_index_by_name (const std::string &name) const |
returns the index of the constraint with name name . More... | |
bool | is_linear () const |
returns true if and only if qp is a linear program. | |
bool | is_nonnegative () const |
returns true if and only if qp is a nonnegative program. | |
void | set_a (int j, int i, const NT &val) |
sets the entry \( A_{ij}\) in column \( j\) and row \( i\) of the constraint matrix \( A\) of qp to val . More... | |
void | set_b (int i, const NT &val) |
sets the entry \( b_i\) of qp to val . More... | |
void | set_r (int i, CGAL::Comparison_result rel) |
sets the entry \( \qprel_i\) of qp to rel . More... | |
void | set_l (int j, bool is_finite, const NT &val=NT(0)) |
if is_finite , this sets the entry \( l_j\) of qp to val , otherwise it sets \( l_j\) to \( -\infty\). More... | |
void | set_u (int j, bool is_finite, const NT &val=NT(0)) |
if is_finite , this sets the entry \( u_j\) of qp to val , otherwise it sets \( u_j\) to \( \infty\). More... | |
void | set_c (int j, const NT &val) |
sets the entry \( c_j\) of qp to val . More... | |
void | set_c0 (const NT &val) |
sets the entry \( c_0\) of qp to val . More... | |
void | set_d (int i, int j, const NT &val) |
sets the entries \( 2D_{ij}\) and \( 2D_{ji}\) of qp to val . More... | |
int CGAL::Quadratic_program_from_mps< NT >::constraint_index_by_name | ( | const std::string & | name | ) | const |
returns the index of the constraint with name name
.
If there is no constraint with this name, the result is \( -1\).
const std::string& CGAL::Quadratic_program_from_mps< NT >::constraint_name_by_index | ( | int | i | ) | const |
returns the name of the \( i\)-th constraint.
void CGAL::Quadratic_program_from_mps< NT >::set_a | ( | int | j, |
int | i, | ||
const NT & | val | ||
) |
sets the entry \( A_{ij}\) in column \( j\) and row \( i\) of the constraint matrix \( A\) of qp
to val
.
An existing entry is overwritten. qp
is enlarged if necessary to accommodate this entry.
void CGAL::Quadratic_program_from_mps< NT >::set_b | ( | int | i, |
const NT & | val | ||
) |
sets the entry \( b_i\) of qp
to val
.
An existing entry is overwritten. qp
is enlarged if necessary to accommodate this entry.
void CGAL::Quadratic_program_from_mps< NT >::set_c | ( | int | j, |
const NT & | val | ||
) |
sets the entry \( c_j\) of qp
to val
.
An existing entry is overwritten. qp
is enlarged if necessary to accommodate this entry.
void CGAL::Quadratic_program_from_mps< NT >::set_c0 | ( | const NT & | val | ) |
sets the entry \( c_0\) of qp
to val
.
An existing entry is overwritten.
void CGAL::Quadratic_program_from_mps< NT >::set_d | ( | int | i, |
int | j, | ||
const NT & | val | ||
) |
sets the entries \( 2D_{ij}\) and \( 2D_{ji}\) of qp
to val
.
Existing entries are overwritten. qp
is enlarged if necessary to accommodate these entries.
j <= i
void CGAL::Quadratic_program_from_mps< NT >::set_l | ( | int | j, |
bool | is_finite, | ||
const NT & | val = NT(0) |
||
) |
if is_finite
, this sets the entry \( l_j\) of qp
to val
, otherwise it sets \( l_j\) to \( -\infty\).
An existing entry is overwritten. qp
is enlarged if necessary to accommodate this entry.
void CGAL::Quadratic_program_from_mps< NT >::set_r | ( | int | i, |
CGAL::Comparison_result | rel | ||
) |
sets the entry \( \qprel_i\) of qp
to rel
.
CGAL::SMALLER
means that the \( i\)-th constraint is of type "\f$ \leq\f$", CGAL::EQUAL
means "\f$ =\f$", and CGAL::LARGER
encodes "\f$ \geq\f$". An existing entry is overwritten. qp
is enlarged if necessary to accommodate this entry.
void CGAL::Quadratic_program_from_mps< NT >::set_u | ( | int | j, |
bool | is_finite, | ||
const NT & | val = NT(0) |
||
) |
if is_finite
, this sets the entry \( u_j\) of qp
to val
, otherwise it sets \( u_j\) to \( \infty\).
An existing entry is overwritten. qp
is enlarged if necessary to accommodate this entry.
int CGAL::Quadratic_program_from_mps< NT >::variable_index_by_name | ( | const std::string & | name | ) | const |
returns the index of the variable with name name
.
If there is no variable with this name, the result is \( -1\).
const std::string& CGAL::Quadratic_program_from_mps< NT >::variable_name_by_index | ( | int | j | ) | const |
returns the name of the \( j\)-th variable.