\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0.2 - 2D and 3D Linear Geometry Kernel

Definition

See also
CGAL::angle()

Operations

A model of this concept must provide:

Angle operator() (const Kernel::Vector_3 &u, const Kernel::Vector_3 &v)
 returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors u and v.
 
Angle operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q, const Kernel::Point_3 &r)
 returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the three points p, q, r (q being the vertex of the angle). More...
 
Angle operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q, const Kernel::Point_3 &r, const Kernel::Point_3 &s)
 returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors pq, rs. More...
 
Angle operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q, const Kernel::Point_3 &r, const Kernel::Vector_3 &v)
 returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the normal of the triangle pqr and the vector v.
 

Member Function Documentation

◆ operator()() [1/2]

Angle Kernel::Angle_3::operator() ( const Kernel::Point_3 p,
const Kernel::Point_3 q,
const Kernel::Point_3 r 
)

returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the three points p, q, r (q being the vertex of the angle).

The returned value is the same as operator()(p - q, r - q).

◆ operator()() [2/2]

Angle Kernel::Angle_3::operator() ( const Kernel::Point_3 p,
const Kernel::Point_3 q,
const Kernel::Point_3 r,
const Kernel::Point_3 s 
)

returns CGAL::OBTUSE, CGAL::RIGHT or CGAL::ACUTE depending on the angle formed by the two vectors pq, rs.

The returned value is the same as operator()(q - p, s - r).