\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0.2 - Linear Cell Complex
CGAL::Cell_attribute_with_point< LCC, Info_, Tag, OnMerge, OnSplit > Class Template Reference

#include <CGAL/Cell_attribute_with_point.h>

Inherits from

CGAL::Cell_attribute< LCC, Info_, Tag, OnMerge, OnSplit >.

Inherited by CGAL::Cell_attribute_with_point_and_id< LCC, Info_, Tag, OnMerge, OnSplit >.

Definition

The class Cell_attribute_with_point represents an attribute containing a point and containing an information when Info_ is different from void.

This class can typically be used to associate a point to each 0-cell of a combinatorial or a generalized map.

Is Model Of:
CellAttributeWithPoint
Template Parameters
LCCa model of the LinearCellComplex concept.
Info_the type of the information contained in the attribute, void for no information. Equal to void by default.
Tagis Tag_true to enable the storage of a Dart_handle of the associated cell, Tag_false otherwise. Equal to Tag_true by default.
OnMergea functor called when two attributes are merged. Equal to Null_functor by default.
OnSplita functor called when one attribute is split in two. Equal to Null_functor by default.
See also
CGAL::Linear_cell_complex_min_items<d>
CGAL::Linear_cell_complex_for_combinatorial_map<d,d2,LCCTraits,Items,Alloc>
CGAL::Linear_cell_complex_for_generalized_map<d,d2,LCCTraits,Items,Alloc>
Examples:
Linear_cell_complex/linear_cell_complex_3_with_colored_vertices.cpp.

Types

typedef LCC::Point Point
 

Additional Inherited Members

- Public Types inherited from CGAL::Cell_attribute< LCC, Info_, Tag, OnMerge, OnSplit >
typedef Info_ Info
 
typedef Tag Supports_cell_dart
 
typedef OnMerge On_merge
 
typedef OnSplit On_split
 
typedef CMap::Dart_handle Dart_handle
 
typedef CMap::Dart_const_handle Dart_const_handle