CGAL 5.0.3 - Geometric Object Generators
|
#include <CGAL/point_generators_2.h>
The class Random_points_in_triangle_2
is an input iterator creating points uniformly distributed inside a triangle.
The default Creator
is Creator_uniform_2<Kernel_traits<Point_2>Kernel::RT,Point_2>
.
std::copy_n()
CGAL::Counting_iterator
CGAL::Points_on_segment_2<Point_2>
CGAL::Random_points_in_disc_2<Point_2, Creator>
CGAL::Random_points_on_segment_2<Point_2, Creator>
CGAL::Random_points_on_square_2<Point_2, Creator>
CGAL::Random_points_in_cube_3<Point_3, Creator>
CGAL::Random_points_in_triangle_3<Point_2, Creator>
CGAL::Random_points_in_tetrahedron_3<Point_2, Creator>
std::random_shuffle
Types | |
typedef std::input_iterator_tag | iterator_category |
typedef Point_2 | value_type |
typedef std::ptrdiff_t | difference_type |
const typedef Point_2 * | pointer |
const typedef Point_2 & | reference |
Random_points_in_triangle_2 (Point_2 &p, Point_2 &q, Point_2 &r, Random &rnd=get_default_random()) | |
Creates an input iterator g generating points of type Point_2 uniformly distributed inside the triangle with vertices \( p, q \) and \( r \), i.e., \(*g = \alpha p + \beta q + \gamma r \), for some \( \alpha, \beta, \gamma \in [0, 1] \) and \( \alpha + \beta + \gamma = 1 \). More... | |
Random_points_in_triangle_2 (Triangle_2 &t, Random &rnd=get_default_random()) | |
Creates an input iterator g generating points of type Point_2 uniformly distributed inside a triangle \(t\) with vertices \( p, q \) and \( r \), i.e., \(*g = \alpha p + \beta q + \gamma r \), for some \( \alpha, \beta, \gamma \in [0, 1] \) and \( \alpha + \beta + \gamma = 1 \). More... | |
CGAL::Random_points_in_triangle_2< Point_2, Creator >::Random_points_in_triangle_2 | ( | Point_2 & | p, |
Point_2 & | q, | ||
Point_2 & | r, | ||
Random & | rnd = get_default_random() |
||
) |
Creates an input iterator g
generating points of type Point_2
uniformly distributed inside the triangle with vertices \( p, q \) and \( r \), i.e., \(*g = \alpha p + \beta q + \gamma r \), for some \( \alpha, \beta, \gamma \in [0, 1] \) and \( \alpha + \beta + \gamma = 1 \).
Two random numbers are needed from rnd
for each point.
CGAL::Random_points_in_triangle_2< Point_2, Creator >::Random_points_in_triangle_2 | ( | Triangle_2 & | t, |
Random & | rnd = get_default_random() |
||
) |
Creates an input iterator g
generating points of type Point_2
uniformly distributed inside a triangle \(t\) with vertices \( p, q \) and \( r \), i.e., \(*g = \alpha p + \beta q + \gamma r \), for some \( \alpha, \beta, \gamma \in [0, 1] \) and \( \alpha + \beta + \gamma = 1 \).
Two random numbers are needed from rnd
for each point.