\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0.3 - Polynomial
PolynomialTraits_d::PseudoDivisionRemainder Concept Reference

Definition

This AdaptableBinaryFunction computes the remainder of the pseudo division of two polynomials \( f\) and \( g\).

Given \( f\) and \( g \neq 0\) one can compute quotient \( q\) and remainder \( r\) such that \( D \cdot f = g \cdot q + r\) and \( degree(r) < degree(g)\), where \( D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}\)

This functor computes \( r\).

Refines:

AdaptableBinaryFunction

CopyConstructible

DefaultConstructible

See also
Polynomial_d
PolynomialTraits_d
PolynomialTraits_d::PseudoDivision
PolynomialTraits_d::PseudoDivisionRemainder
PolynomialTraits_d::PseudoDivisionQuotient

Types

typedef PolynomialTraits_d::Polynomial_d result_type
 
typedef PolynomialTraits_d::Polynomial_d first_argument_type
 
typedef PolynomialTraits_d::Polynomial_d second_argument_type
 

Operations

result_type operator() (first_argument_type f, second_argument_type g)
 Returns the remainder \( r\) of the pseudo division of \( f\) and \( g\) with respect to the outermost variable \( x_{d-1}\).