\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0.4 - Algebraic Foundations
FractionTraits_::CommonFactor Concept Reference

Definition

AdaptableBinaryFunction, finds great common factor of denominators.

This can be considered as a relaxed version of AlgebraicStructureTraits_::Gcd, this is needed because it is not guaranteed that FractionTraits::Denominator_type is a model of UniqueFactorizationDomain.

Refines:
AdaptableBinaryFunction
See also
Fraction
FractionTraits
FractionTraits_::Decompose
FractionTraits_::Compose
AlgebraicStructureTraits_::Gcd

Types

typedef FractionTraits::Denominator_type result_type
 
typedef FractionTraits::Denominator_type first_argument_type
 
typedef FractionTraits::Denominator_type second_argument_type
 

Operations

result_type operator() (first_argument_type d1, second_argument_type d2)
 return a great common factor of \( d1\) and \( d2\). More...
 

Member Function Documentation

◆ operator()()

result_type FractionTraits_::CommonFactor::operator() ( first_argument_type  d1,
second_argument_type  d2 
)

return a great common factor of \( d1\) and \( d2\).

Note: operator()(0,0) = 0