Processing math: 0%
\newcommand{\E}{\mathrm{E}} \newcommand{\A}{\mathrm{A}} \newcommand{\R}{\mathrm{R}} \newcommand{\N}{\mathrm{N}} \newcommand{\Q}{\mathrm{Q}} \newcommand{\Z}{\mathrm{Z}} \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }
CGAL 5.0.4 - Algebraic Kernel
All Classes Namespaces Files Functions Variables Typedefs Enumerations Friends Modules Pages
AlgebraicKernel_d_1::Isolate_1 Concept Reference

Definition

Computes an open isolating interval for an AlgebraicKernel_d_1::Algebraic_real_1 with respect to the real roots of a given univariate polynomial.

Refines:
AdaptableBinaryFunction
See also
AlgebraicKernel_d_1::ComputePolynomial_1

Types

typedef std::pair< AlgebraicKernel_d_1::Bound, AlgebraicKernel_d_1::Boundresult_type
 
typedef AlgebraicKernel_d_1::Algebraic_real_1 first_argument_type
 
typedef AlgebraicKernel_d_1::Polynomial_1 second_argument_type
 

Operations

result_type operator() (first_argument_type a, second_argument_type p)
 Computes an open isolating interval I=(l,u) for a with respect to the real roots of p. More...
 

Member Function Documentation

◆ operator()()

result_type AlgebraicKernel_d_1::Isolate_1::operator() ( first_argument_type  a,
second_argument_type  p 
)

Computes an open isolating interval I=(l,u) for a with respect to the real roots of p.

It is not required that a is a root of p.

Postcondition
a \in I.
p(x) \neq0 | \forall x \in\overline{I}\backslash a.