\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0.4 - 2D and 3D Linear Geometry Kernel
Kernel::LessSignedDistanceToPlane_3 Concept Reference

Definition

Operations

A model of this concept must provide:

bool operator() (const Kernel::Plane_3 &p, const Kernel::Point_3 &q, const Kernel::Point_3 &r)
 returns true, iff the signed distance from point q to plane p is smaller than the signed distance from point r to p.
 
bool operator() (const Kernel::Point_3 &p1, const Kernel::Point_3 &p2, const Kernel::Point_3 &p3, const Kernel::Point_3 &q, const Kernel::Point_3 &r)
 returns true, iff the signed distance from point q to the plane p defined by p1, p2, p3 is smaller than the signed distance from point r to p. More...
 

Member Function Documentation

◆ operator()()

bool Kernel::LessSignedDistanceToPlane_3::operator() ( const Kernel::Point_3 p1,
const Kernel::Point_3 p2,
const Kernel::Point_3 p3,
const Kernel::Point_3 q,
const Kernel::Point_3 r 
)

returns true, iff the signed distance from point q to the plane p defined by p1, p2, p3 is smaller than the signed distance from point r to p.

Precondition
p, q, and r are not collinear.