CGAL 5.0 - Algebraic Kernel
AlgebraicKernel_d_2::IsolateX_2 Concept Reference

## Definition

Computes an isolating interval for the first coordinate of an AlgebraicKernel_d_2::Algebraic_real_2 with respect to the real roots of a univariate polynomial.

Refines:
AdaptableBinaryFunction
AlgebraicKernel_d_2::IsolateY_2
AlgebraicKernel_d_2::ComputePolynomialX_2
AlgebraicKernel_d_2::ComputePolynomialY_2

## Types

typedef std::pair< AlgebraicKernel_d_2::Bound, AlgebraicKernel_d_2::Bound > result_type

typedef AlgebraicKernel_d_2::Algebraic_real_2 first_argument_type

typedef AlgebraicKernel_d_2::Polynomial_1 second_argument_type

## Operations

result_type operator() (first_argument_type a, second_argument_type p)
Computes an open isolating interval $$I=(l,u)$$ for the first coordinate $$x$$ of $$a$$ with respect to the real roots of $$p$$. More...

## ◆ operator()()

 result_type AlgebraicKernel_d_2::IsolateX_2::operator() ( first_argument_type a, second_argument_type p )

Computes an open isolating interval $$I=(l,u)$$ for the first coordinate $$x$$ of $$a$$ with respect to the real roots of $$p$$.

It is not required that $$x$$ is a root of $$p$$.

Postcondition
$$x \in I$$.
$$p(\alpha) \neq0 | \forall\alpha\in\overline{I}\backslash x$$.