 CGAL 5.0 - Bounding Volumes
CGAL::Min_ellipse_2_traits_2< K > Class Template Reference

#include <CGAL/Min_ellipse_2_traits_2.h>

## Definition

The class Min_ellipse_2_traits_2 is a traits class for CGAL::Min_ellipse_2<Traits> using the two-di-men-sional CGAL kernel.

The template parameter K must be a model for Kernel.

Is Model Of:
MinEllipse2Traits
CGAL::Min_ellipse_2<Traits>
MinEllipse2Traits
Examples:
Min_ellipse_2/min_ellipse_2.cpp.

## Types

typedef unspecified_type Point
typedef to K::Point_2.

typedef unspecified_type Ellipse
internal type.

## Access Functions

The Ellipse type provides the following access methods not required by the concept MinEllipse2Traits.

bool is_circle ()
tests whether the ellipse is a circle.

void double_coefficients (double &r, double &s, double &t, double &u, double &v, double &w)
gives a double approximation of the ellipse's conic equation. More...

## Creation

Min_ellipse_2_traits_2 ()
default constructor.

Min_ellipse_2_traits_2 (const Min_ellipse_2_traits_2< K > &)
copy constructor.

## ◆ double_coefficients()

template<typename K>
 void CGAL::Min_ellipse_2_traits_2< K >::double_coefficients ( double & r, double & s, double & t, double & u, double & v, double & w )

gives a double approximation of the ellipse's conic equation.

If K is a Cartesian kernel, the ellipse is the set of all points $$(x,y)$$ satisfying $$rx^2+sy^2+txy+ux+vy+w=0$$. In the Homogeneous case, the ellipse is the set of points $$(hx,hy,hw)$$ satisfying $$r(hx)^2+s(hy)^2+t(hx)(hy)+u(hx)(hw)+v(hy)(hw)+w(hw)^2=0$$.