\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0 - Bounding Volumes
CGAL::Approximate_min_ellipsoid_d_traits_2< K, ET > Struct Template Reference

#include <CGAL/Approximate_min_ellipsoid_d_traits_2.h>


The class Approximate_min_ellipsoid_d_traits_2 is a traits class for CGAL::Approximate_min_ellipsoid_d<Traits> using the 2-dimensional CGAL kernel.

In order to use this class, an exact number-type ET has to be provided which Approximate_min_ellipsoid_d<Traits> will use for its internal exact computations.

Template Parameters
Kmust be a model for concept Kernel.
ETmust be a model for the concept EuclideanRing with exact arithmetic operations, i.e., the type Algebraic_structure_traits<ET>::Is_exact must be CGAL::Tag_true. (Examples of such a number-type are MP_Float, CORE::Expr, and Gmpq.)
Is Model Of:
See also


typedef unspecified_type FT
 typedef double FT. More...
typedef unspecified_type ET
 typedef to the second template argument, ET.
typedef unspecified_type Point
 typedef K::Point_2 Point
typedef unspecified_type Cartesian_const_iterator
 typedef K::Cartesian_const_iterator_2 Cartesian_const_iterator

Member Typedef Documentation

◆ FT

template<typename K , typename ET >
typedef unspecified_type CGAL::Approximate_min_ellipsoid_d_traits_2< K, ET >::FT

typedef double FT.

The kernel's number type K::RT must be convertible to double.