Loading [MathJax]/extensions/TeX/newcommand.js
\newcommand{\E}{\mathrm{E}} \newcommand{\A}{\mathrm{A}} \newcommand{\R}{\mathrm{R}} \newcommand{\N}{\mathrm{N}} \newcommand{\Q}{\mathrm{Q}} \newcommand{\Z}{\mathrm{Z}} \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }
CGAL 5.0 - Geometric Object Generators
All Classes Namespaces Files Functions Variables Typedefs Enumerations Friends Modules Pages
CGAL::Random_points_in_cube_3< Point_3, Creator > Class Template Reference

#include <CGAL/point_generators_3.h>

Definition

The class Random_points_in_cube_3 is an input iterator creating points uniformly distributed in a half-open cube.

The default Creator is Creator_uniform_3<Kernel_traits<Point_3>Kernel::RT,Point_3>.

Is Model Of:

InputIterator

PointGenerator

See also
std::copy_n()
CGAL::Counting_iterator
CGAL::Random_points_in_square_2<Point_2, Creator>
CGAL::Random_points_in_sphere_3<Point_3, Creator>
CGAL::Random_points_in_triangle_3<Point_3, Creator>
CGAL::Random_points_in_tetrahedron_3<Point_3, Creator>
CGAL::Random_points_on_sphere_3<Point_3, Creator>
std::random_shuffle

Types

typedef std::input_iterator_tag iterator_category
 
typedef Point_3 value_type
 
typedef std::ptrdiff_t difference_type
 
const typedef Point_3pointer
 
const typedef Point_3reference
 
 Random_points_in_cube_3 (double a, Random &rnd=get_default_random())
 Creates an input iterator g generating points of type Point_3 uniformly distributed in the half-open cube with side length 2 a, centered at the origin, i.e. \forall p = *g: -a \le p.x(),p.y(),p.z() < a . More...
 

Constructor & Destructor Documentation

◆ Random_points_in_cube_3()

template<typename Point_3 , typename Creator >
CGAL::Random_points_in_cube_3< Point_3, Creator >::Random_points_in_cube_3 ( double  a,
Random rnd = get_default_random() 
)

Creates an input iterator g generating points of type Point_3 uniformly distributed in the half-open cube with side length 2 a, centered at the origin, i.e. \forall p = *g: -a \le p.x(),p.y(),p.z() < a .

Three random numbers are needed from rnd for each point.