\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0 - Geometric Object Generators
CGAL::Random_points_on_segment_2< Point_2, Creator > Class Template Reference

#include <CGAL/point_generators_2.h>

Definition

Types

typedef std::input_iterator_tag iterator_category
 
typedef Point_2 value_type
 
typedef std::ptrdiff_t difference_type
 
const typedef Point_2pointer
 
const typedef Point_2reference
 
 Random_points_on_segment_2 (const Point_2 &p, const Point_2 &q, Random &rnd=get_default_random())
 creates an input iterator g generating points of type Point_2 uniformly distributed on the segment from \( p\) to \( q\) (excluding \( q\)), i.e. \( *g == (1-\lambda)\, p + \lambda q\) where \( 0 \le\lambda< 1\). More...
 

Constructor & Destructor Documentation

◆ Random_points_on_segment_2()

template<typename Point_2, typename Creator>
CGAL::Random_points_on_segment_2< Point_2, Creator >::Random_points_on_segment_2 ( const Point_2 p,
const Point_2 q,
Random rnd = get_default_random() 
)

creates an input iterator g generating points of type Point_2 uniformly distributed on the segment from \( p\) to \( q\) (excluding \( q\)), i.e. \( *g == (1-\lambda)\, p + \lambda q\) where \( 0 \le\lambda< 1\).

A single random number is needed from rnd for each point. The expressions to_double(p.x()) and to_double(p.y()) must result in the respective double representation of the coordinates of \( p\), and similarly for \( q\).