CGAL 5.0 - Geometric Object Generators
CGAL::Random_points_on_segment_3< Point_3, Creator > Class Template Reference

#include <CGAL/point_generators_3.h>

## Definition

The class Random_points_on_segment_3 is an input iterator creating points uniformly distributed on a segment.

The default Creator is Creator_uniform_3<Kernel_traits<Point_3>Kernel::RT,Point_3>.

Is Model Of:

PointGenerator

std::copy_n()
CGAL::Counting_iterator
std::random_shuffle

## Types

typedef std::input_iterator_tag iterator_category

typedef Point_3 value_type

typedef std::ptrdiff_t difference_type

const typedef Point_3pointer

const typedef Point_3reference

Random_points_on_segment_3 (const Point_3 &p, const Point_3 &q, Random &rnd=get_default_random())
creates an input iterator g generating points of type Point_3 uniformly distributed on the segment from $$p$$ to $$q$$ (excluding $$q$$), i.e. $$*g == (1-\lambda)\, p + \lambda q$$ where $$0 \le\lambda< 1$$. More...

## ◆ Random_points_on_segment_3()

template<typename Point_3 , typename Creator >
 CGAL::Random_points_on_segment_3< Point_3, Creator >::Random_points_on_segment_3 ( const Point_3 & p, const Point_3 & q, Random & rnd = get_default_random() )

creates an input iterator g generating points of type Point_3 uniformly distributed on the segment from $$p$$ to $$q$$ (excluding $$q$$), i.e. $$*g == (1-\lambda)\, p + \lambda q$$ where $$0 \le\lambda< 1$$.

A single random number is needed from rnd for each point. The expressions to_double(p.x()), to_double(p.y()), and to_double(p.z()) must result in the respective double representation of the coordinates of $$p$$, and similarly for $$q$$.