\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0 - 2D and 3D Linear Geometry Kernel
Kernel::SideOfOrientedCircle_2 Concept Reference

Definition

Operations

A model of this concept must provide:

Oriented_side operator() (const Kernel::Point_2 &p, const Kernel::Point_2 &q, const Kernel::Point_2 &r, const Kernel::Point_2 &t)
 returns the relative position of point t to the oriented circle defined by p, q and r. More...
 

Member Function Documentation

◆ operator()()

Oriented_side Kernel::SideOfOrientedCircle_2::operator() ( const Kernel::Point_2 p,
const Kernel::Point_2 q,
const Kernel::Point_2 r,
const Kernel::Point_2 t 
)

returns the relative position of point t to the oriented circle defined by p, q and r.

The order of the points p, q and r is important, since it determines the orientation of the implicitly constructed circle.

If p, q and r are collinear, the circle degenerates in a line. CGAL::ON_ORIENTED_BOUNDARY is returned if t is also collinear or if two points are identical, otherwise, side_of_oriented_circle(r, q, t, p) is returned.