CGAL 5.0 - dD Geometry Kernel
|
#include <CGAL/Kernel_d/Aff_transformation_d.h>
An instance of the data type Aff_transformation_d<Kernel>
is an affine transformation of \( d\)-dimensional space.
It is specified by a square matrix \( M\) of dimension \( d + 1\). All entries in the last row of M
except the diagonal entry must be zero; the diagonal entry must be non-zero. A point \( p\) with homogeneous coordinates \( (p[0], \ldots, p[d])\) can be transformed into the point p.transform(A)
= \( Mp\), where A
is an affine transformation created from M
by the constructors below.
Implementation
Affine Transformations are implemented by matrices of number type RT
as a handle type. All operations like creation, initialization, input and output on a transformation \( t\) take time \( O(t.dimension()^2)\). dimension()
takes constant time. The operations for inversion and composition have the cubic costs of the used matrix operations. The space requirement is \( O(t.dimension()^2)\).
Types | |
typedef unspecified_type | LA |
the linear algebra layer. | |
typedef unspecified_type | Matrix |
the matrix type. | |
Creation | |
Aff_transformation_d () | |
introduces some transformation. | |
Aff_transformation_d (int d, Identity_transformation) | |
introduces the identity transformation in \( d\)-dimensional space. | |
Aff_transformation_d (Matrix M) | |
introduces the transformation of \( d\)-space specified by matrix \( M\). More... | |
template<typename Forward_iterator > | |
Aff_transformation_d (Scaling, Forward_iterator start, Forward_iterator end) | |
introduces the transformation of \( d\)-space specified by a diagonal matrix with entries set [start,end) on the diagonal (a scaling of the space). More... | |
Aff_transformation_d (Translation, Vector_d< Kernel > v) | |
introduces the translation by vector \( v\). | |
Aff_transformation_d (int d, Scaling, RT num, RT den) | |
returns a scaling by a scale factor num/den . More... | |
Aff_transformation_d (int d, Rotation, RT sin_num, RT cos_num, RT den, int e1=0, int e2=1) | |
returns a planar rotation with sine and cosine values sin_num/den and cos_num/den in the plane spanned by the base vectors \( b_{e1}\) and \( b_{e2}\) in \( d\)-space. More... | |
Aff_transformation_d (int d, Rotation, Direction_d< Kernel > dir, RT num, RT den, int e1=0, int e2=1) | |
returns a planar rotation within a two-dimensional linear subspace. More... | |
Operations | |
int | dimension () |
the dimension of the underlying space | |
const Matrix & | matrix () |
returns the transformation matrix More... | |
Aff_transformation_d< Kernel > | inverse () |
returns the inverse transformation. More... | |
Aff_transformation_d< Kernel > | operator* (const Aff_transformation_d< Kernel > &s) |
composition of transformations. More... | |
CGAL::Aff_transformation_d< Kernel >::Aff_transformation_d | ( | Matrix | M | ) |
introduces the transformation of \( d\)-space specified by matrix \( M\).
M
is a square matrix of dimension \( d + 1\) where entries in the last row of M
except the diagonal entry must be zero; the diagonal entry must be non-zero. CGAL::Aff_transformation_d< Kernel >::Aff_transformation_d | ( | Scaling | , |
Forward_iterator | start, | ||
Forward_iterator | end | ||
) |
introduces the transformation of \( d\)-space specified by a diagonal matrix with entries set [start,end)
on the diagonal (a scaling of the space).
set [start,end)
is a vector of dimension \( d+1\). CGAL::Aff_transformation_d< Kernel >::Aff_transformation_d | ( | int | d, |
Scaling | , | ||
RT | num, | ||
RT | den | ||
) |
returns a scaling by a scale factor num/den
.
den != 0
. CGAL::Aff_transformation_d< Kernel >::Aff_transformation_d | ( | int | d, |
Rotation | , | ||
RT | sin_num, | ||
RT | cos_num, | ||
RT | den, | ||
int | e1 = 0 , |
||
int | e2 = 1 |
||
) |
returns a planar rotation with sine and cosine values sin_num/den
and cos_num/den
in the plane spanned by the base vectors \( b_{e1}\) and \( b_{e2}\) in \( d\)-space.
Thus the default use delivers a planar rotation in the \( x\)- \( y\) plane.
den != 0
. CGAL::Aff_transformation_d< Kernel >::Aff_transformation_d | ( | int | d, |
Rotation | , | ||
Direction_d< Kernel > | dir, | ||
RT | num, | ||
RT | den, | ||
int | e1 = 0 , |
||
int | e2 = 1 |
||
) |
returns a planar rotation within a two-dimensional linear subspace.
The subspace is spanned by the base vectors \( b_{e1}\) and \( b_{e2}\) in \( d\)-space. The rotation parameters are given by the \( 2\)-dimensional direction dir
, such that the difference between the sines and cosines of the rotation given by dir
and the approximated rotation are at most num/den
each.
dir.dimension() == 2
, !dir.is_degenerate()
and num < den
is positive, den != 0
, \( 0 \leq e_1 < e_2 < d\). Aff_transformation_d<Kernel> CGAL::Aff_transformation_d< Kernel >::inverse | ( | ) |
returns the inverse transformation.
t.matrix()
is invertible. const Matrix& CGAL::Aff_transformation_d< Kernel >::matrix | ( | ) |
returns the transformation matrix
Aff_transformation_d<Kernel> CGAL::Aff_transformation_d< Kernel >::operator* | ( | const Aff_transformation_d< Kernel > & | s | ) |
composition of transformations.
Note that transformations are not necessarily commutative. t*s
is the transformation which transforms first by t
and then by s
.