\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0 - dD Geometry Kernel
CGAL::Iso_box_d< Kernel > Class Template Reference

#include <CGAL/Kernel_d/Iso_box_d.h>


An object \( b\) of the data type Iso_box_d is an iso-box in the Euclidean space \( \E^d\) with edges parallel to the axes of the coordinate system.


 Iso_box_d (const Point_d< Kernel > &p, const Point_d< Kernel > &q)
 introduces an iso-oriented iso-box b with diagonal opposite vertices \( p\) and \( q\).


bool operator== (const Iso_box_d< Kernel > &b2) const
 Test for equality: two iso-oriented cuboid are equal, iff their lower left and their upper right vertices are equal.
bool operator!= (const Iso_box_d< Kernel > &b2) const
 Test for inequality.
const Point_d< Kernel > & min () const
 returns the smallest vertex of b.
const Point_d< Kernel > & max () const
 returns the largest vertex of b.


bool is_degenerate () const
 b is degenerate, if all vertices are collinear.
Bounded_side bounded_side (const Point_d< Kernel > &p) const
 returns either ON_UNBOUNDED_SIDE, ON_BOUNDED_SIDE, or the constant ON_BOUNDARY, depending on where point \( p\) is.
bool has_on_boundary (const Point_d< Kernel > &p) const
bool has_on_bounded_side (const Point_d< Kernel > &p) const
bool has_on_unbounded_side (const Point_d< Kernel > &p) const


Kernel_d::FT volume () const
 returns the volume of b.