\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0 - 2D Periodic Hyperbolic Triangulations
CGAL::Periodic_4_hyperbolic_Delaunay_triangulation_2< GT, TDS > Class Template Reference

#include <CGAL/Periodic_4_hyperbolic_Delaunay_triangulation_2.h>

Inherits from

CGAL::Periodic_4_hyperbolic_triangulation_2< GT, TDS >.

Definition

The class Periodic_4_hyperbolic_Delaunay_triangulation_2 enables the construction and handling of Delaunay triangulations of the Bolza surface.

The class expects two template parameters.

Template Parameters
GTGeometric Traits parameter. Must be a model of the concept Periodic_4HyperbolicDelaunayTriangulationTraits_2. The default value for this parameter is Periodic_4_hyperbolic_Delaunay_triangulation_traits_2<>.
TDSTriangulation Data Structure parameter. Must be a model of the concept TriangulationDataStructure_2 with some additional functionality in the vertices and faces, following the concepts Periodic_4HyperbolicTriangulationVertexBase_2 and Periodic_4HyperbolicTriangulationFaceBase_2, respectively. The default value for this parameter is Triangulation_data_structure_2< Periodic_4_hyperbolic_triangulation_vertex_base_2<GT>, Periodic_4_hyperbolic_triangulation_face_base_2<GT> >
Examples:
Periodic_4_hyperbolic_triangulation_2/p4ht2_example_insertion.cpp.

Creation

 Periodic_4_hyperbolic_Delaunay_triangulation_2 (const Geom_traits &gt=Geom_traits())
 Default constructor with an optional parameter for the geometric traits object.
 
 Periodic_4_hyperbolic_Delaunay_triangulation_2 (const Periodic_4_hyperbolic_Delaunay_triangulation_2 &tr)
 Copy constructor.
 
template<class InputIterator >
 Periodic_4_hyperbolic_Delaunay_triangulation_2 (InputIterator first, InputIterator last, const Geom_traits &gt=Geom_traits())
 Point range constructor. More...
 

Clearing the triangulation

void clear ()
 Deletes all faces and vertices of the triangulation, and re-initializes the triangulation data structure with the set of dummy points.
 

Queries

template<class OutputFaceIterator >
void find_conflicts (const Point &p, OutputFaceIterator it, Face_handle start=Face_handle(), Hyperbolic_translation ltr=Hyperbolic_translation()) const
 Computes the conflict zone induced by p. More...
 
bool is_dummy_vertex (Vertex_handle vh) const
 Checks if the vertex vh is part of the set of vertices storing dummy points.
 
int number_of_dummy_points () const
 Returns the number of dummy points currently existing in the triangulation.
 
bool is_valid (bool verbose=false) const
 Checks the combinatorial validity of the triangulation, and also the validity of its geometric embedding. More...
 

Point insertion

Vertex_handle insert (const Point &p, Face_handle start=Face_handle())
 Inserts the point p in the triangulation. More...
 
template<class InputIterator >
std::ptrdiff_t insert (InputIterator first, InputIterator last, const bool flag_try_to_remove_dummy_vertices=true)
 Inserts all points in the input iterator into the triangulation. More...
 

Vertex removal

bool remove (Vertex_handle v)
 Removes the vertex v from the triangulation. More...
 
template<class VertexRemoveIterator >
void remove (VertexRemoveIterator first, VertexRemoveIterator last)
 Removes the vertices in the iterator range [firs, last) from the triangulation. More...
 

Removal of dummy points

int try_to_remove_dummy_vertices ()
 Tries to remove the dummy points from the triangulation one by one. More...
 

Voronoi diagram

Voronoi_point dual (Face_handle f, Hyperbolic_translation nbtr=Hyperbolic_translation()) const
 Returns the dual of face f, i.e., the hyperbolic center of the disk defined by the vertices of f. More...
 
Segment dual (const Edge &e) const
 Returns the hyperbolic segment that is dual to the edge e.
 

Additional Inherited Members

- Public Types inherited from CGAL::Periodic_4_hyperbolic_triangulation_2< GT, TDS >
enum  Locate_type { VERTEX = 0, EDGE, FACE }
 
typedef GT Geometric_traits
 
typedef TDS Triangulation_data_structure
 
typedef Triangulation_data_structure::Vertex::Point Point
 Represents a point in the hyperbolic plane. More...
 
typedef Geometric_traits::Hyperbolic_segment_2 Hyperbolic_segment
 Represents a hyperbolic segment in the hyperbolic plane.
 
typedef Geometric_traits::Hyperbolic_triangle_2 Hyperbolic_triangle
 Represents a triangle contained in the Poincaré disk.
 
typedef Geometric_traits::Hyperbolic_translation Hyperbolic_translation
 
typedef std::pair< Point, Hyperbolic_translationPeriodic_point
 Represents a periodic point, i.e., a pair of a point in the original octagon and a hyperbolic translation.
 
typedef std::array< std::pair< Point, Hyperbolic_translation >, 2 > Periodic_segment
 Represents a periodic segment, defined by two periodic points.
 
typedef std::array< std::pair< Point, Hyperbolic_translation >, 3 > Periodic_triangle
 Represents a periodic triangle, defined by three periodic points.
 
typedef Triangulation_data_structure::Edge Edge
 
typedef Triangulation_data_structure::Face Face
 
typedef Triangulation_data_structure::Vertex_handle Vertex_handle
 
typedef Triangulation_data_structure::Face_handle Face_handle
 
typedef Triangulation_data_structure::Face_iterator Face_iterator
 
typedef Triangulation_data_structure::Edge_iterator Edge_iterator
 
typedef Triangulation_data_structure::Vertex_iterator Vertex_iterator
 
typedef Triangulation_data_structure::Face_circulator Face_circulator
 
typedef Triangulation_data_structure::Edge_circulator Edge_circulator
 
typedef Triangulation_data_structure::Vertex_circulator Vertex_circulator
 
- Public Member Functions inherited from CGAL::Periodic_4_hyperbolic_triangulation_2< GT, TDS >
 Periodic_4_hyperbolic_triangulation_2 (const Geometric_traits &gt=Geometric_traits())
 Default constructor, with an optional parameter for the geometric traits object.
 
 Periodic_4_hyperbolic_triangulation_2 (const Periodic_4_hyperbolic_triangulation_2 &tr)
 Copy constructor.
 
Periodic_4_hyperbolic_triangulation_2operator= (Periodic_4_hyperbolic_triangulation_2 tr)
 The triangulation tr is duplicated, and modifying the copy after the duplication does not modify the original.
 
void swap (Periodic_4_hyperbolic_triangulation_2 &tr)
 The triangulation is swapped with tr.
 
void clear ()
 Deletes all faces and vertices of the triangulation.
 
bool operator== (const Periodic_4_hyperbolic_triangulation_2< GT, TDS > &tr1, const Periodic_4_hyperbolic_triangulation_2< GT, TDS > &tr2)
 Equality operator. More...
 
bool operator!= (const Periodic_4_hyperbolic_triangulation_2< GT, TDS > &tr1, const Periodic_4_hyperbolic_triangulation_2< GT, TDS > &tr2)
 Inequality operator. More...
 
const Geometric_traitsgeom_traits () const
 Returns a const reference to the geometric traits object.
 
const Triangulation_data_structuretds () const
 Returns a const reference to the triangulation data structure.
 
Triangulation_data_structuretds ()
 Returns a reference to the triangulation data structure.
 
size_type number_of_vertices () const
 Returns the number of vertices in the triangulation.
 
size_type number_of_edges () const
 Returns the number of edges in the triangulation.
 
size_type number_of_faces () const
 Returns the number of faces in the triangulation.
 
Periodic_point periodic_point (const Face_handle f, int i) const
 Returns the periodic point given by the i-th vertex of face f, that is the point in the original domain and the translation of the vertex in f. More...
 
Periodic_segment periodic_segment (const Point &p1, const Point &p2, const Hyperbolic_translation &tr1, const Hyperbolic_translation &tr2) const
 Returns the periodic segment formed by the two point-translation pairs (p1, tr1) and (p2, tr2).
 
Periodic_segment periodic_segment (const Point &p1, const Point &p2) const
 Returns the periodic segment formed by the two point-translation pairs (p1, Id) and (p2, Id), where Id is the identity translation.
 
Periodic_segment periodic_segment (const Face_handle c, int i, int j) const
 Returns the periodic segment formed by the endpoints of edge (f,i,j). More...
 
Periodic_segment periodic_segment (const Edge &e) const
 Returns the periodic segment formed by the endpoints of edge e. More...
 
Periodic_segment periodic_segment (const Edge &e, const Hyperbolic_translation &tr) const
 Returns the periodic segment formed by the endpoints of edge e translated by tr. More...
 
Periodic_triangle periodic_triangle (const Face &f) const
 Returns the periodic triangle formed by the pairs of points and translations corresponding to each vertex of f.
 
Periodic_triangle periodic_triangle (const Face &f, const Hyperbolic_translation &tr) const
 Returns the periodic triangle formed by the pairs of points and translations corresponding to each vertex of f, translated by tr.
 
Point construct_point (const Periodic_point &pp) const
 Converts the periodic point pp into a point in the hyperbolic plane by applying pp.second to pp.first.
 
Hyperbolic_segment construct_hyperbolic_segment (const Face_handle &fh, int idx) const
 Constructs the hyperbolic segment formed by the endpoints of edge (fh, idx). More...
 
Hyperbolic_segment construct_hyperbolic_segment (const Point &p1, const Point &p2) const
 Returns the hyperbolic segment with endpoints p1 and p2.
 
Hyperbolic_segment construct_hyperbolic_segment (const pair< Face_handle, int > &e) const
 Returns the hyperbolic segment formed by the endpoints of e.
 
Hyperbolic_segment construct_hyperbolic_segment (const Periodic_segment &ps) const
 Returns the hyperbolic segment formed by the endpoints of ps.
 
Triangle construct_triangle (const Face_handle &fh) const
 Returns the triangle formed by the vertices of fh.
 
Triangle construct_triangle (const Periodic_triangle &pt) const
 Returns the triangle formed by the vertices of pt.
 
Face_handle hyperbolic_periodic_locate (const Point &p, Hyperbolic_translation &lo, const Face_handle start=Face_handle()) const
 Returns the face rf for which the periodic triangle (rf, lo) contains the query point p. More...
 
Face_handle hyperbolic_periodic_locate (const Point &p, Locate_type &lt, int &li, Hyperbolic_translation &lo, const Face_handle start=Face_handle()) const
 Same as above. More...
 
Face_handle hyperbolic_locate (const Point &p, Face_handle start=Face_handle()) const
 Returns the canonical representative of the face that contains the query point p. More...
 
Face_handle hyperbolic_locate (const Point &p, Locate_type &lt, int &li, Face_handle start=Face_handle()) const
 Same as above. More...
 
Orientation orientation (const Point &p1, const Point &p2, const Point &p3) const
 Returns the Orientation of the points p1, p2, p3. More...
 
Orientation orientation (const Point &p1, const Point &p2, const Point &p3, const Hyperbolic_translation &tr1, const Hyperbolic_translation &tr2, const Hyperbolic_translation &tr3) const
 Returns the Orientation of the three periodic points (p1, tr1), (p2, tr2) and (p3, tr3).
 
Oriented_side side_of_oriented_circle (const Point &p1, const Point &p2, const Point &p3, const Point &q) const
 Returns the Oriented_side on which q is located with respect to the circle defined by the points p1,p2,p3. More...
 
Oriented_side side_of_oriented_circle (const Point &p1, const Point &p2, const Point &p3, const Point &q, const Hyperbolic_translation &tr1, const Hyperbolic_translation &tr2, const Hyperbolic_translation &tr3, const Hyperbolic_translation &trq) const
 Returns the Oriented_side on which the periodic point (q, trq) is located with respect to the circle defined by the periodic points (p1, tr1), (p2, tr2) and (p3, tr3).
 
bool is_vertex (Vertex_handle v) const
 Tests whether v is a vertex of the triangulation.
 
bool is_edge (Vertex_handle u, Vertex_handle v, Face_handle &fh, int &i) const
 Tests whether (u, v) is an edge of the triangulation. More...
 
bool is_face (Vertex_handle u, Vertex_handle v, Vertex_handle w, Face_handle &fh) const
 Tests whether there exists a face in the triangulation with vertices u, v and w. More...
 
bool has_vertex (const Face_handle f, const Vertex_handle v, const int i) const
 Tests whether face f has v as a vertex. More...
 
Vertex_iterator vertices_begin () const
 Starts at an arbitrary vertex. More...
 
Vertex_iterator vertices_end () const
 Past-the-end iterator.
 
Edge_iterator edges_begin () const
 Starts at an arbitrary edge. More...
 
Edge_iterator edges_end () const
 Past-the-end iterator.
 
Face_iterator faces_begin () const
 Starts at an arbitrary face. More...
 
Face_iterator faces_end () const
 Past-the-end iterator.
 
Vertex_circulator adjacent_vertices (Vertex_handle v) const
 Starts at an arbitrary vertex incident to v.
 
Vertex_circulator adjacent_vertices (Vertex_handle v, Face_handle f) const
 Starts at the first vertex of f adjacent to v in counterclockwise order around v.
 
Edge_circulator incident_edges (Vertex_handle v) const
 Starts at an arbitrary edge incident to v.
 
Edge_circulator incident_edges (Vertex_handle v, Face_handle f) const
 Starts at the first edge of f incident to v, in counterclockwise order around v.
 
Face_circulator incident_faces (Vertex_handle v) const
 Starts at an arbitrary face incident to v.
 
Face_circulator incident_faces (Vertex_handle v, Face_handle f) const
 Starts at face f.
 
template<class OutputIterator >
OutputIterator incident_faces (Vertex_handle v, OutputIterator faces) const
 Copies the faces incident to v into the output iterator faces.
 
template<class OutputIterator >
OutputIterator incident_edges (Vertex_handle v, OutputIterator edges) const
 Copies the edges incident to v into the output iterator edges.
 
template<class OutputIterator >
OutputIterator adjacent_vertices (Vertex_handle v, OutputIterator vertices) const
 Copies the vertices incident to v into the output iterator vertices.
 
size_type degree (Vertex_handle v) const
 Returns the degree of v, i.e., the number of edges incident to v.
 
int mirror_index (Face_handle f, int i) const
 Returns the index of f in its i-th neighbor.
 
Vertex_handle mirror_vertex (Face_handle f, int i) const
 Returns the vertex of the i-th neighbor of f that is opposite to f.
 
Edge mirror_edge (Edge e) const
 Returns the same edge seen from the other adjacent face.
 
Hyperbolic_translation neighbor_translation (const Face_handle fh, int i) const
 Returns the hyperbolic translation for which the i-th neighbor of fh is adjacent to (the canonical representative of) fh in the hyperbolic plane.
 
bool is_valid (bool verbose=false) const
 Checks the combinatorial validity of the triangulation, and also the validity of its geometric embedding.
 
bool is_valid (Face_handle f, bool verbose=false) const
 Checks the combinatorial validity of face f.
 

Constructor & Destructor Documentation

◆ Periodic_4_hyperbolic_Delaunay_triangulation_2()

template<class GT , class TDS >
template<class InputIterator >
CGAL::Periodic_4_hyperbolic_Delaunay_triangulation_2< GT, TDS >::Periodic_4_hyperbolic_Delaunay_triangulation_2 ( InputIterator  first,
InputIterator  last,
const Geom_traits &  gt = Geom_traits() 
)

Point range constructor.

Initializes a triangulation and then inserts the points in the iterator range [first, last).

Member Function Documentation

◆ dual()

template<class GT , class TDS >
Voronoi_point CGAL::Periodic_4_hyperbolic_Delaunay_triangulation_2< GT, TDS >::dual ( Face_handle  f,
Hyperbolic_translation  nbtr = Hyperbolic_translation() 
) const

Returns the dual of face f, i.e., the hyperbolic center of the disk defined by the vertices of f.

If the optional parameter nbtr is given, then this function returns the dual of the periodic triangle (f, nbtr).

◆ find_conflicts()

template<class GT , class TDS >
template<class OutputFaceIterator >
void CGAL::Periodic_4_hyperbolic_Delaunay_triangulation_2< GT, TDS >::find_conflicts ( const Point p,
OutputFaceIterator  it,
Face_handle  start = Face_handle(),
Hyperbolic_translation  ltr = Hyperbolic_translation() 
) const

Computes the conflict zone induced by p.

The output iterator it contains all faces in conflict with p. The optional parameters start and ltr, if given, must be such that start translated by ltr is in conflict with p.

◆ insert() [1/2]

template<class GT , class TDS >
Vertex_handle CGAL::Periodic_4_hyperbolic_Delaunay_triangulation_2< GT, TDS >::insert ( const Point p,
Face_handle  start = Face_handle() 
)

Inserts the point p in the triangulation.

The face start, if given, is used as a starting place for the location of the point. Note that this function does not remove unnecessary dummy points. The removal, if desired, should be done by manually calling the function try_to_remove_dummy_vertices().

◆ insert() [2/2]

template<class GT , class TDS >
template<class InputIterator >
std::ptrdiff_t CGAL::Periodic_4_hyperbolic_Delaunay_triangulation_2< GT, TDS >::insert ( InputIterator  first,
InputIterator  last,
const bool  flag_try_to_remove_dummy_vertices = true 
)

Inserts all points in the input iterator into the triangulation.

Note that this function by default tries to remove unnecessary dummy points at the end of the insertion process. This behavior is controlled by the optional boolean parameter flag_try_to_remove_dummy_vertices; if automatic removal of the dummy points is not desired, set the flag to false.

◆ is_valid()

template<class GT , class TDS >
bool CGAL::Periodic_4_hyperbolic_Delaunay_triangulation_2< GT, TDS >::is_valid ( bool  verbose = false) const

Checks the combinatorial validity of the triangulation, and also the validity of its geometric embedding.

In more detail, this function verifies that:

  • The underlying triangulation data structure, is valid (see the function is_valid())
  • Each face of the triangulation is positively oriented and has the Delaunay property.
  • The Euler relation for genus-2 surfaces is satisfied, i.e., \(V-E+F = -2\), where \(V, E, F\) are the number of vertices, edges and faces of the triangulation, respectively.

◆ remove() [1/2]

template<class GT , class TDS >
bool CGAL::Periodic_4_hyperbolic_Delaunay_triangulation_2< GT, TDS >::remove ( Vertex_handle  v)

Removes the vertex v from the triangulation.

Note that v is removed from the triangulation only if the resulting triangulation remains a simplicial complex. The function returns true if the vertex v is removed from the triangulation, otherwise it returns false.

◆ remove() [2/2]

template<class GT , class TDS >
template<class VertexRemoveIterator >
void CGAL::Periodic_4_hyperbolic_Delaunay_triangulation_2< GT, TDS >::remove ( VertexRemoveIterator  first,
VertexRemoveIterator  last 
)

Removes the vertices in the iterator range [firs, last) from the triangulation.

Precondition
all vertices in [first, last) are vertices of the triangulation.

◆ try_to_remove_dummy_vertices()

template<class GT , class TDS >
int CGAL::Periodic_4_hyperbolic_Delaunay_triangulation_2< GT, TDS >::try_to_remove_dummy_vertices ( )

Tries to remove the dummy points from the triangulation one by one.

Returns the number of dummy points that could not be removed and are still present in the triangulation.