Loading [MathJax]/extensions/TeX/newcommand.js
\newcommand{\E}{\mathrm{E}} \newcommand{\A}{\mathrm{A}} \newcommand{\R}{\mathrm{R}} \newcommand{\N}{\mathrm{N}} \newcommand{\Q}{\mathrm{Q}} \newcommand{\Z}{\mathrm{Z}} \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }
CGAL 5.0 - Polynomial
All Classes Namespaces Files Functions Variables Typedefs Enumerations Friends Modules Pages
PolynomialTraits_d::GcdUpToConstantFactor Concept Reference

Definition

This AdaptableBinaryFunction computes the gcd up to a constant factor (utcf) of two polynomials of type PolynomialTraits_d::Polynomial_d.

In case the base ring R (PolynomialTraits_d::Innermost_coefficient_type) is not a UniqueFactorizationDomain or not a Field the polynomial ring R[x_0,\dots,x_{d-1}] (PolynomialTraits_d::Polynomial_d) may not possesses greatest common divisors. However, since R is an integral domain one can consider its quotient field Q(R) for which gcds of polynomials exist.

This functor computes gcd\_utcf(f,g) = D * gcd(f,g), for some D \in R such that gcd\_utcf(f,g) \in R[x_0,\dots,x_{d-1}]. Hence, gcd\_utcf(f,g) may not be a divisor of f and g in R[x_0,\dots,x_{d-1}].

Refines:

AdaptableBinaryFunction

CopyConstructible

DefaultConstructible

See also
Polynomial_d
PolynomialTraits_d
PolynomialTraits_d::IntegralDivisionUpToConstantFactor
PolynomialTraits_d::UnivariateContentUpToConstantFactor
PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor

Types

typedef PolynomialTraits_d::Polynomial_d result_type
 
typedef PolynomialTraits_d::Polynomial_d first_argument_type
 
typedef PolynomialTraits_d::Polynomial_d second_argument_type
 

Operations

result_type operator() (first_argument_type f, second_argument_type g)
 Computes gcd(f,g) up to a constant factor.