Processing math: 4%
\newcommand{\E}{\mathrm{E}} \newcommand{\A}{\mathrm{A}} \newcommand{\R}{\mathrm{R}} \newcommand{\N}{\mathrm{N}} \newcommand{\Q}{\mathrm{Q}} \newcommand{\Z}{\mathrm{Z}} \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }
CGAL 5.0 - Polynomial
All Classes Namespaces Files Functions Variables Typedefs Enumerations Friends Modules Pages
PolynomialTraits_d::PseudoDivisionQuotient Concept Reference

Definition

This AdaptableBinaryFunction computes the quotient of the pseudo division of two polynomials f and g.

Given f and g \neq 0 one can compute quotient q and remainder r such that D \cdot f = g \cdot q + r and degree(r) < degree(g), where D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}

This functor computes q.

Refines:

AdaptableBinaryFunction

CopyConstructible

DefaultConstructible

See also
Polynomial_d
PolynomialTraits_d
PolynomialTraits_d::PseudoDivision
PolynomialTraits_d::PseudoDivisionRemainder
PolynomialTraits_d::PseudoDivisionQuotient

Types

typedef PolynomialTraits_d::Polynomial_d result_type
 
typedef PolynomialTraits_d::Polynomial_d first_argument_type
 
typedef PolynomialTraits_d::Polynomial_d second_argument_type
 

Operations

result_type operator() (first_argument_type f, second_argument_type g)
 Returns the quotient q of the pseudo division of f and g with respect to the outermost variable x_{d-1}.