\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0 - Polynomial
PolynomialTraits_d::Shift Concept Reference

Definition

This AdaptableBinaryFunction multiplies a PolynomialTraits_d::Polynomial_d by the given power of the specified variable.

This functor is provided for efficiency reasons, since multiplication by some variable will in general correspond to a shift of coefficients in the internal representation.

Refines:

AdaptableBinaryFunction

CopyConstructible

DefaultConstructible

See also
Polynomial_d
PolynomialTraits_d

Types

typedef PolynomialTraits_d::Polynomial_d result_type
 
typedef PolynomialTraits_d::Polynomial_d first_argument_type
 
typedef int second_argument_type
 

Operations

result_type operator() (first_argument_type p, second_argument_type e)
 Returns \( p * x_{d-1}^e\). More...
 
result_type operator() (first_argument_type p, second_argument_type e, int i)
 Returns \( p * x_{i}^e\). More...
 

Member Function Documentation

◆ operator()() [1/2]

result_type PolynomialTraits_d::Shift::operator() ( first_argument_type  p,
second_argument_type  e 
)

Returns \( p * x_{d-1}^e\).

Precondition
\( 0 \leq e\).

◆ operator()() [2/2]

result_type PolynomialTraits_d::Shift::operator() ( first_argument_type  p,
second_argument_type  e,
int  i 
)

Returns \( p * x_{i}^e\).

Precondition
\( 0 \leq e\).
\( 0 \leq i < d\).