Loading [MathJax]/extensions/TeX/newcommand.js
\newcommand{\E}{\mathrm{E}} \newcommand{\A}{\mathrm{A}} \newcommand{\R}{\mathrm{R}} \newcommand{\N}{\mathrm{N}} \newcommand{\Q}{\mathrm{Q}} \newcommand{\Z}{\mathrm{Z}} \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }
CGAL 5.0 - CGAL and Solvers
All Classes Namespaces Files Functions Variables Typedefs Enumerations Friends Modules Pages
CGAL::Eigen_svd Class Reference

#include <CGAL/Eigen_svd.h>

Definition

The class Eigen_svd provides an algorithm to solve in the least square sense a linear system with a singular value decomposition using Eigen.

Is Model Of:
SvdTraits
Examples:
Solver_interface/singular_value_decomposition.cpp.

Static Public Member Functions

static FT solve (const Matrix &M, Vector &B)
 Solves the system MX=B (in the least square sense if M is not square) using a singular value decomposition.The solution is stored in B. More...
 

Types

typedef double FT
 
typedef Eigen_vector< FTVector
 
typedef Eigen_matrix< FTMatrix
 

Member Function Documentation

◆ solve()

static FT CGAL::Eigen_svd::solve ( const Matrix M,
Vector B 
)
static

Solves the system MX=B (in the least square sense if M is not square) using a singular value decomposition.The solution is stored in B.

Returns
the condition number of M