CGAL 5.1.1 - 3D Periodic Triangulations
|
#include <CGAL/Periodic_3_regular_triangulation_3.h>
CGAL::Periodic_3_triangulation_3< PT, TDS >.
The class Periodic_3_regular_triangulation_3
represents a weighted Delaunay triangulation in three-dimensional periodic space.
PT | must be a model of the concept Periodic_3RegularTriangulationTraits_3 . |
TDS | must be a model of the concept TriangulationDataStructure_3 . Its default value is Triangulation_data_structure_3<Regular_triangulation_vertex_base_3<PT,Periodic_3_triangulation_ds_vertex_base_3<> >, Regular_triangulation_cell_base_3<PT,Periodic_3_triangulation_ds_cell_base_3<>>> . |
Types | |
typedef TDS::Point_3 | Bare_point |
typedef TDS::Weighted_point_3 | Weighted_point |
The type for points p of weighted points \( {p}^{(w)}=(p,w_p)\). | |
Creation | |
Periodic_3_regular_triangulation_3 (const Iso_cuboid &domain=Iso_cuboid(0, 0, 0, 1, 1, 1), const Geom_traits &traits=Geom_traits()) | |
Creates an empty periodic regular triangulation rt , with domain as original domain and possibly specifying a traits class traits . More... | |
Periodic_3_regular_triangulation_3 (const Periodic_3_regular_triangulation_3 &rt1) | |
Copy constructor. | |
template<class InputIterator > | |
Periodic_3_regular_triangulation_3 (InputIterator first, InputIterator last, const Iso_cuboid &domain=Iso_cuboid(0, 0, 0, 1, 1, 1), const Geom_traits &traits=Geom_traits(), bool is_large_point_set=false) | |
Equivalent to constructing an empty triangulation with the optional domain and traits class arguments and calling insert(first,last) . More... | |
Access Functions | |
size_type | number_of_hidden_points () const |
Returns the number of hidden points. | |
Insertion | |
The following methods insert points in the triangulation ensuring the property that all power spheres are regular. The inserted weighted points must lie in the original domain (see Section The Flat Torus of the user manual). Note that the insertion of a new point can cause a switch from computing in the 27-sheeted covering space to computing in the 1-sheeted covering space, which invalidates some | |
Vertex_handle | insert (const Weighted_point &p, Cell_handle start=Cell_handle()) |
Inserts the point p in the triangulation and returns the corresponding vertex. More... | |
Vertex_handle | insert (const Weighted_point &p, Locate_type lt, Cell_handle loc, int li, int lj) |
Inserts point p in the triangulation and returns the corresponding vertex. More... | |
template<class InputIterator > | |
std::ptrdiff_t | insert (InputIterator first, InputIterator last, bool is_large_point_set=false) |
Inserts the points in the iterator range \( \left[\right.\)first , last \( \left.\right)\). More... | |
Removal | |
void | remove (Vertex_handle v) |
Removes the vertex v from the triangulation. More... | |
template<class InputIterator > | |
std::ptrdiff_t | remove (InputIterator first, InputIterator beyond) |
Removes the vertices specified by the iterator range (first, beyond ) of value type Vertex_handle . More... | |
Queries | |
Bounded_side | side_of_power_sphere (Cell_handle c, const Weighted_point &p, const Offset &off=Offset(0, 0, 0)) const |
Returns a value indicating the position of the (weighted point, offset) pair (p ,off ) with respect to the power sphere of c . More... | |
Vertex_handle | nearest_power_vertex (const Bare_point &p, Cell_handle c=Cell_handle()) const |
Returns the vertex of the triangulation which is nearest to \( p\) with respect to the power distance. More... | |
A point-offset pair ( The set of cells that are in conflict with ( | |
template<class OutputIteratorBoundaryFacets , class OutputIteratorCells , class OutputIteratorInternalFacets > | |
Triple< OutputIteratorBoundaryFacets, OutputIteratorCells, OutputIteratorInternalFacets > | find_conflicts (const Weighted_point &p, Cell_handle c, OutputIteratorBoundaryFacets bfit, OutputIteratorCells cit, OutputIteratorInternalFacets ifit) const |
Computes the conflict hole induced by p . More... | |
template<class OutputIterator > | |
OutputIterator | vertices_in_conflict (const Weighted_point &p, Cell_handle c, OutputIterator res) const |
Similar to find_conflicts() , but reports the vertices that are on the boundary of the conflict hole of p , in the output iterator res . More... | |
Power diagram | |
CGAL offers several functions to display the Voronoi diagram of a set of points in 3D. Note that a traits class providing exact constructions should be used in order to guarantee the computation of the Voronoi diagram (as opposed to computing the triangulation only, which requires only exact predicates). | |
Bare_point | canonical_dual (Cell_handle c) const |
Returns the representative of the weighted circumcenter of the four vertices of c that lies in the original domain domain . | |
Bare_point | dual (Cell_handle c) const |
Returns the circumcenter of the four vertices of c. | |
Periodic_segment_3 | dual (Facet f) const |
Returns the dual of the facet f , which is a periodic segment. | |
Periodic_segment_3 | dual (Cell_handle c, int i) const |
same as the previous method for the facet (c,i) . More... | |
template<class OutputIterator > | |
OutputIterator | dual (Edge e, OutputIterator pts) const |
Returns in the output iterator the points of the dual polygon of the edge e in the same order as the Facet_circulator returns facets incident to the edge e . More... | |
template<class OutputIterator > | |
OutputIterator | dual (Cell_handle c, int i, int j, OutputIterator pts) const |
same as the previous method for the edge (c,i,j) . More... | |
template<class OutputIterator > | |
OutputIterator | dual (Vertex_handle v, OutputIterator pts) const |
Returns in the output iterator the points of the dual polyhedron of the vertex v in no particular order. More... | |
template<class Stream > | |
Stream & | draw_dual (Stream &os) |
Sends the set of duals to all the facets of rt into os . | |
Geom_traits::FT | dual_volume (Vertex_handle v) const |
Returns the volume of the cell of the power diagram dual to v . | |
Bare_point | dual_centroid (Vertex_handle v) const |
Returns the centroid of the cell of the power diagram dual to v . | |
Checking | |
These methods are mainly a debugging help for the users of advanced features. | |
bool | is_valid (bool verbose=false) const |
Checks the combinatorial validity of the triangulation and the validity of its geometric embedding (see Section Representation). More... | |
bool | is_valid (Cell_handle c, bool verbose=false) const |
Checks the combinatorial and geometric validity of the cell (see Section Representation). More... | |
Additional Inherited Members | |
Public Types inherited from CGAL::Periodic_3_triangulation_3< PT, TDS > | |
enum | Locate_type |
The enum Locate_type is defined by Periodic_3_triangulation_3 to specify which case occurs when locating a point in the triangulation. More... | |
enum | Iterator_type |
The enum Iterator_type is defined by Periodic_3_triangulation_3 to specify the behavior of geometric iterators. More... | |
typedef PT | Geom_traits |
typedef TDS | Triangulation_data_structure |
typedef Geom_traits::Periodic_3_offset_3 | Offset |
typedef Geom_traits::Iso_cuboid_3 | Iso_cuboid |
A type representing an axis-aligned cuboid. More... | |
typedef array< int, 3 > | Covering_sheets |
Integer triple to store the number of sheets in each direction of space. | |
typedef TDS::Vertex::Point | Point |
The point type of the triangulation. More... | |
typedef Geom_traits::Point_3 | Point_3 |
The geometric basic 3D point type. | |
typedef Geom_traits::Segment_3 | Segment |
typedef Geom_traits::Triangle_3 | Triangle |
typedef Geom_traits::Tetrahedron_3 | Tetrahedron |
typedef std::pair< Point, Offset > | Periodic_point |
Represents a point-offset pair. More... | |
typedef std::pair< Point_3, Offset > | Periodic_point_3 |
Represents a point-offset pair. More... | |
typedef array< Periodic_point, 2 > | Periodic_segment |
A periodic segment. More... | |
typedef array< Periodic_point_3, 2 > | Periodic_segment_3 |
A periodic segment. More... | |
typedef array< Periodic_point, 3 > | Periodic_triangle |
A periodic triangle. More... | |
typedef array< Periodic_point_3, 3 > | Periodic_triangle_3 |
A periodic triangle. More... | |
typedef array< Periodic_point, 4 > | Periodic_tetrahedron |
A periodic tetrahedron. More... | |
typedef array< Periodic_point_3, 4 > | Periodic_tetrahedron_3 |
A periodic tetrahedron. More... | |
typedef Triangulation_data_structure::Vertex | Vertex |
typedef Triangulation_data_structure::Cell | Cell |
typedef Triangulation_data_structure::Edge | Edge |
typedef Triangulation_data_structure::Facet | Facet |
typedef Triangulation_data_structure::Vertex_handle | Vertex_handle |
handle to a vertex | |
typedef Triangulation_data_structure::Cell_handle | Cell_handle |
handle to a cell | |
typedef Triangulation_data_structure::size_type | size_type |
Size type (an unsigned integral type) | |
typedef Triangulation_data_structure::difference_type | difference_type |
Difference type (a signed integral type) | |
typedef Triangulation_data_structure::Cell_iterator | Cell_iterator |
iterator over cells | |
typedef Triangulation_data_structure::Facet_iterator | Facet_iterator |
iterator over facets | |
typedef Triangulation_data_structure::Edge_iterator | Edge_iterator |
iterator over edges | |
typedef Triangulation_data_structure::Vertex_iterator | Vertex_iterator |
iterator over vertices | |
typedef unspecified_type | Unique_vertex_iterator |
iterator over the vertices whose corresponding points lie in the original domain, i.e. for each set of periodic copies the Unique_vertex_iterator iterates over exactly one representative. | |
typedef Triangulation_data_structure::Cell_circulator | Cell_circulator |
circulator over all cells incident to a given edge | |
typedef Triangulation_data_structure::Facet_circulator | Facet_circulator |
circulator over all facets incident to a given edge | |
typedef unspecified_type | Periodic_tetrahedron_iterator |
iterator over the tetrahedra corresponding to cells of the triangulation. | |
typedef unspecified_type | Periodic_triangle_iterator |
iterator over the triangles corresponding to facets of the triangulation. | |
typedef unspecified_type | Periodic_segment_iterator |
iterator over the segments corresponding to edges of the triangulation. | |
typedef unspecified_type | Periodic_point_iterator |
iterator over the points corresponding to vertices of the triangulation. | |
Public Member Functions inherited from CGAL::Periodic_3_triangulation_3< PT, TDS > | |
Periodic_3_triangulation_3 (const Iso_cuboid &domain=Iso_cuboid(0, 0, 0, 1, 1, 1), const Geom_traits &traits=Geom_traits()) | |
Introduces an empty triangulation t with domain as original domain. More... | |
Periodic_3_triangulation_3 (const Periodic_3_triangulation_3 &tr) | |
Copy constructor. More... | |
Periodic_3_triangulation_3 & | operator= (const Periodic_3_triangulation_3 &tr) |
The triangulation tr is duplicated, and modifying the copy after the duplication does not modify the original. More... | |
void | swap (Periodic_3_triangulation_3 &tr) |
The triangulations tr and t are swapped. More... | |
void | clear () |
Deletes all vertices and all cells of t . | |
const Geom_traits & | geom_traits () const |
Returns a const reference to the geometric traits object. | |
const Triangulation_data_structure & | tds () const |
Returns a const reference to the triangulation data structure. | |
Iso_cuboid | domain () const |
Returns the original domain. | |
Covering_sheets | number_of_sheets () const |
This is an advanced function. More... | |
Offset | neighbor_offset (Cell_handle ch, int i) const |
Get the offset between the origins of the internal offset coordinate systems of two neighboring cells with respect from ch to its i-th neighbor. | |
Triangulation_data_structure & | tds () |
This is an advanced function. More... | |
void | set_domain (const Iso_cuboid dom) |
This is an advanced function. More... | |
bool | is_extensible_triangulation_in_1_sheet_h1 () const |
The current triangulation remains a triangulation in the 1-sheeted covering space even after adding points if this method returns true . More... | |
bool | is_extensible_triangulation_in_1_sheet_h2 () const |
The same as is_extensible_triangulation_in_1_sheet_h1() but with a more precise heuristic, i.e. it might answer true in cases in which is_extensible_triangulation_in_1_sheet_h1() would not. More... | |
bool | is_triangulation_in_1_sheet () const |
Returns true if the current triangulation would still be a triangulation in the 1-sheeted covering space, returns false otherwise. | |
void | convert_to_1_sheeted_covering () const |
Converts the current triangulation into the same periodic triangulation in the 1-sheeted covering space. More... | |
void | convert_to_27_sheeted_covering () const |
Converts the current triangulation into the same periodic triangulation in the 27-sheeted covering space. More... | |
size_type | number_of_vertices () const |
Returns the number of vertices. More... | |
size_type | number_of_cells () const |
Returns the number of cells. More... | |
size_type | number_of_stored_vertices () const |
Returns the number of vertices in the data structure. More... | |
size_type | number_of_stored_cells () const |
Returns the number of cells in the data structure. More... | |
size_type | number_of_edges () const |
Returns the number of edges. More... | |
size_type | number_of_facets () const |
Returns the number of facets. More... | |
size_type | number_of_stored_edges () const |
Returns the number of edges in the data structure. More... | |
size_type | number_of_stored_facets () const |
Returns the number of facets in the data structure. More... | |
Periodic_point | periodic_point (const Vertex_handle v) const |
Returns the periodic point given by vertex v . More... | |
Periodic_point | periodic_point (const Cell_handle c, int i) const |
If t is represented in the 1-sheeted covering space, this function returns the periodic point given by the \( i\)-th vertex of cell c , that is the point in the original domain and the offset of the vertex in c . More... | |
Periodic_segment | periodic_segment (const Cell_handle c, int i, int j) const |
Returns the periodic segment formed by the two point-offset pairs corresponding to the two vertices of edge (c,i,j) . More... | |
Periodic_segment | periodic_segment (const Cell_handle c, Offset offset, int i, int j) const |
Returns the periodic segment formed by the two point-offset pairs corresponding to the two vertices of edge (c,i,j) . More... | |
Periodic_segment | periodic_segment (const Edge &e) const |
Same as the previous method for edge e . | |
Periodic_triangle | periodic_triangle (const Cell_handle c, int i) const |
Returns the periodic triangle formed by the three point-offset pairs corresponding to the three vertices of facet (c,i) . More... | |
Periodic_triangle | periodic_triangle (const Cell_handle c, Offset offset, int i) const |
Returns the periodic triangle formed by the three point-offset pairs corresponding to the three vertices of facet (c,i) . More... | |
Periodic_triangle | periodic_triangle (const Facet &f) const |
Same as the previous method for facet f . | |
Periodic_tetrahedron | periodic_tetrahedron (const Cell_handle c) const |
Returns the periodic tetrahedron formed by the four point-offset pairs corresponding to the four vertices of c . | |
Periodic_tetrahedron | periodic_tetrahedron (const Cell_handle c, Offset offset) const |
Returns the periodic tetrahedron formed by the four point-offset pairs corresponding to the four vertices of c . More... | |
Point_3 | construct_point (const PP &pp) const |
Converts the periodic point of type PP to a Point_3 . More... | |
Point_3 | construct_point (const Point &p) const |
Converts the Point p to a Point_3 . | |
Point_3 | construct_point (const P &p1, const Offset &o1) const |
Same as above, with offsets. | |
Segment | construct_segment (const PS &s) const |
Converts the periodic segment of type PS to a Segment . More... | |
Segment | construct_segment (const P &p1, const P &p2) const |
Creates a segment from two points. More... | |
Segment | construct_segment (const P &p1, const P &p2, const Offset &o1, const Offset &o2) const |
Same as above, with offsets. | |
Triangle | construct_triangle (const PT &t) const |
Converts the periodic triangle of type PT to a Triangle . More... | |
Triangle | construct_triangle (const P &p1, const P &p2, const P &p3) const |
Creates a triangle from three points. More... | |
Triangle | construct_triangle (const P &p1, const P &p2, const P &p3, const Offset &o1, const Offset &o2, const Offset &o3) const |
Same as above, with offsets. | |
Tetrahedron | construct_tetrahedron (const PT &t) const |
Converts the periodic tetrahedron of type PT to a Tetrahedron . More... | |
Tetrahedron | construct_tetrahedron (const P &p1, const P &p2, const P &p3, const P &p4) const |
Creates a tetrahedron from four points. More... | |
Tetrahedron | construct_tetrahedron (const P &p1, const P &p2, const P &p3, const P &p4, const Offset &o1, const Offset &o2, const Offset &o3, const Offset &o4) const |
Same as above, with offsets. | |
bool | is_vertex (const Point &p, Vertex_handle &v) const |
Tests whether p is a vertex of t by locating p in the triangulation. More... | |
bool | is_vertex (Vertex_handle v) const |
Tests whether v is a vertex of t . | |
bool | is_edge (Vertex_handle u, Vertex_handle v, Cell_handle &c, int &i, int &j) const |
Tests whether (u,v) is an edge of t . More... | |
bool | is_edge (Vertex_handle u, const Offset &offu, Vertex_handle v, const Offset &offv, Cell_handle &c, int &i, int &j) const |
Tests whether ((u,offu),(v,offu)) is an edge of t . More... | |
bool | is_facet (Vertex_handle u, Vertex_handle v, Vertex_handle w, Cell_handle &c, int &i, int &j, int &k) const |
Tests whether (u,v,w) is a facet of t . More... | |
bool | is_facet (Vertex_handle u, const Offset &offu, Vertex_handle v, const Offset &offv, Vertex_handle w, const Offset &offw, Cell_handle &c, int &i, int &j, int &k) const |
Tests whether ((u,offu),(v,offv),(w,offw)) is a facet of t . More... | |
bool | is_cell (Cell_handle c) const |
Tests whether c is a cell of t . | |
bool | is_cell (Vertex_handle u, Vertex_handle v, Vertex_handle w, Vertex_handle x, Cell_handle &c, int &i, int &j, int &k, int &l) const |
Tests whether (u,v,w,x) is a cell of t . More... | |
bool | is_cell (Vertex_handle u, Vertex_handle v, Vertex_handle w, Vertex_handle x, Cell_handle &c) const |
Tests whether (u,v,w,x) is a cell of t and computes this cell c . More... | |
bool | is_cell (Vertex_handle u, const Offset &offu, Vertex_handle v, const Offset &offv, Vertex_handle w, const Offset &offw, Vertex_handle x, const Offset &offx, Cell_handle &c, int &i, int &j, int &k, int &l) const |
Tests whether ((u,offu),(v,offv),(w,offv),(x,offx)) is a cell of t . More... | |
bool | is_cell (Vertex_handle u, const Offset &offu, Vertex_handle v, const Offset &offv, Vertex_handle w, const Offset &offw, Vertex_handle x, const Offset &offx, Cell_handle &c) const |
Tests whether ((u,offu),(v,offv),(w,offv),(x,offx)) is a cell of t and computes this cell c . More... | |
bool | has_vertex (const Facet &f, Vertex_handle v, int &j) const |
If v is a vertex of f , then j is the index of v in the cell f.first , and the method returns true . | |
bool | has_vertex (Cell_handle c, int i, Vertex_handle v, int &j) const |
Same for facet (c,i) . More... | |
bool | has_vertex (const Facet &f, Vertex_handle v) const |
bool | has_vertex (Cell_handle c, int i, Vertex_handle v) const |
Same as the first two methods, but these two methods do not return the index of the vertex. | |
bool | are_equal (Cell_handle c, int i, Cell_handle n, int j) const |
bool | are_equal (const Facet &f, const Facet &g) const |
bool | are_equal (const Facet &f, Cell_handle n, int j) const |
Cell_handle | locate (const Point &query, Cell_handle start=Cell_handle()) const |
Returns the cell that contains the query in its interior. More... | |
Cell_handle | locate (const Point &query, Offset &locate_offset, Cell_handle start=Cell_handle()) const |
Returns the cell that contains the query in its interior. More... | |
Cell_handle | locate (const Point &query, Locate_type <, int &li, int &lj, Cell_handle start=Cell_handle()) const |
The \( k\)-face that contains query in its interior is returned, by means of the cell returned together with lt , which is set to the locate type of the query (VERTEX, EDGE, FACET, CELL ) and two indices li and lj that specify the \( k\)-face of the cell containing query . More... | |
Cell_handle | locate (const Point &query, Offset &locate_offset, Locate_type <, int &li, int &lj, Cell_handle start=Cell_handle()) const |
The \( k\)-face that contains query in its interior is returned, by means of the cell returned together with lt , which is set to the locate type of the query (VERTEX, EDGE, FACET, CELL ) and two indices li and lj that specify the \( k\)-face of the cell containing query . More... | |
Cell_handle | inexact_locate (const Point &query, Cell_handle start=Cell_handle()) const |
Same as locate() but uses inexact predicates. More... | |
Bounded_side | side_of_cell (const Point &p, Cell_handle c, Locate_type <, int &li, int &lj) const |
Returns a value indicating on which side of the oriented boundary of c the point p lies. More... | |
Vertex_iterator | vertices_begin () const |
Starts at an arbitrary vertex. More... | |
Vertex_iterator | vertices_end () const |
Past-the-end iterator. | |
Edge_iterator | edges_begin () const |
Starts at an arbitrary edge. More... | |
Edge_iterator | edges_end () const |
Past-the-end iterator. | |
Facet_iterator | facets_begin () const |
Starts at an arbitrary facet. More... | |
Facet_iterator | facets_end () const |
Past-the-end iterator. | |
Cell_iterator | cells_begin () const |
Starts at an arbitrary cell. More... | |
Cell_iterator | cells_end () const |
Past-the-end iterator. | |
Unique_vertex_iterator | unique_vertices_begin () const |
Starts at an arbitrary vertex. More... | |
Unique_vertex_iterator | unique_vertices_end () const |
Past-the-end iterator. | |
Periodic_point_iterator | periodic_points_begin (Iterator_type it=STORED) const |
Iterates over the points of the triangulation. More... | |
Periodic_point_iterator | periodic_points_end (Iterator_type it=STORED) const |
Past-the-end iterator. More... | |
Periodic_segment_iterator | periodic_segments_begin (Iterator_type it=STORED) const |
Iterates over the segments of the triangulation. More... | |
Periodic_segment_iterator | periodic_segments_end (Iterator_type it=STORED) const |
Past-the-end iterator. More... | |
Periodic_triangle_iterator | periodic_triangles_begin (Iterator_type it=STORED) const |
Iterates over the triangles of the triangulation. More... | |
Periodic_triangle_iterator | periodic_triangles_end (Iterator_type it=STORED) const |
Past-the-end iterator. More... | |
Periodic_tetrahedron_iterator | periodic_tetrahedra_begin (Iterator_type it=STORED) const |
Iterates over the tetrahedra of the triangulation. More... | |
Periodic_tetrahedron_iterator | periodic_tetrahedra_end (Iterator_type it=STORED) const |
Past-the-end iterator. More... | |
Cell_circulator | incident_cells (Edge e) const |
Starts at an arbitrary cell incident to e . | |
Cell_circulator | incident_cells (Cell_handle c, int i, int j) const |
As above for edge (i,j) of c . | |
Cell_circulator | incident_cells (Edge e, Cell_handle start) const |
Starts at cell start . More... | |
Cell_circulator | incident_cells (Cell_handle c, int i, int j, Cell_handle start) const |
As above for edge (i,j) of c . | |
Facet_circulator | incident_facets (Edge e) const |
Starts at an arbitrary facet incident to e . | |
Facet_circulator | incident_facets (Cell_handle c, int i, int j) const |
As above for edge (i,j) of c . | |
Facet_circulator | incident_facets (Edge e, Facet start) const |
Starts at facet start . More... | |
Facet_circulator | incident_facets (Edge e, Cell_handle start, int f) const |
Starts at facet of index f in start . | |
Facet_circulator | incident_facets (Cell_handle c, int i, int j, Facet start) const |
As above for edge (i,j) of c . | |
Facet_circulator | incident_facets (Cell_handle c, int i, int j, Cell_handle start, int f) const |
As above for edge (i,j) of c and facet (start,f) . | |
OutputIterator | incident_cells (Vertex_handle v, OutputIterator cells) const |
Copies the Cell_handle s of all cells incident to v to the output iterator cells . More... | |
OutputIterator | incident_facets (Vertex_handle v, OutputIterator facets) const |
Copies the Facet s incident to v to the output iterator facets . More... | |
OutputIterator | incident_edges (Vertex_handle v, OutputIterator edges) const |
Copies the Edge s incident to v to the output iterator edges . More... | |
OutputIterator | adjacent_vertices (Vertex_handle v, OutputIterator vertices) const |
Copies the Vertex_handle s of all vertices adjacent to v to the output iterator vertices . More... | |
size_type | degree (Vertex_handle v) const |
Returns the degree of a vertex, that is, the number of adjacent vertices. More... | |
int | mirror_index (Cell_handle c, int i) const |
Returns the index of c in its \( i^{th}\) neighbor. More... | |
Vertex_handle | mirror_vertex (Cell_handle c, int i) const |
Returns the vertex of the \( i^{th}\) neighbor of c that is opposite to c . More... | |
Facet | mirror_facet (Facet f) const |
Returns the same facet viewed from the other adjacent cell. | |
bool | is_valid (bool verbose=false) const |
Checks the combinatorial validity of the triangulation. More... | |
bool | is_valid (Cell_handle c, bool verbose=false) const |
Checks the combinatorial validity of the cell by calling the is_valid method of the Triangulation_data_structure cell class. More... | |
Related Functions inherited from CGAL::Periodic_3_triangulation_3< PT, TDS > | |
istream & | operator>> (istream &is, Periodic_3_triangulation_3 &t) |
Reads a triangulation from is and stores it in t . More... | |
ostream & | operator<< (ostream &os, const Periodic_3_triangulation_3 &t) |
Writes the triangulation t into os . More... | |
bool | operator== (const Periodic_3_triangulation_3< PT, TDS1 > &t1, const Periodic_3_triangulation_3< PT, TDS2 > &t2) |
Equality operator. More... | |
bool | operator!= (const Periodic_3_triangulation_3< PT, TDS1 > &t1, const Periodic_3_triangulation_3< PT, TDS2 > &t2) |
The opposite of operator== . | |
CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::Periodic_3_regular_triangulation_3 | ( | const Iso_cuboid & | domain = Iso_cuboid(0, 0, 0, 1, 1, 1) , |
const Geom_traits & | traits = Geom_traits() |
||
) |
Creates an empty periodic regular triangulation rt
, with domain
as original domain and possibly specifying a traits class traits
.
domain
is a cube. CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::Periodic_3_regular_triangulation_3 | ( | InputIterator | first, |
InputIterator | last, | ||
const Iso_cuboid & | domain = Iso_cuboid(0, 0, 0, 1, 1, 1) , |
||
const Geom_traits & | traits = Geom_traits() , |
||
bool | is_large_point_set = false |
||
) |
Equivalent to constructing an empty triangulation with the optional domain and traits class arguments and calling insert(first,last)
.
value_type
of first
and last
are Weighted_point
s lying inside domain
and domain
is a cube. Their weights are non-negative and smaller than 1/64 times the squared cube edge length. If the fourth argument is_large_point_set
is set to true
a heuristic for optimizing the insertion of large point sets is applied. Periodic_segment_3 CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::dual | ( | Cell_handle | c, |
int | i | ||
) | const |
same as the previous method for the facet (c,i)
.
OutputIterator CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::dual | ( | Edge | e, |
OutputIterator | pts | ||
) | const |
Returns in the output iterator the points of the dual polygon of the edge e
in the same order as the Facet_circulator
returns facets incident to the edge e
.
The points form the dual polygon in \( \mathbb R^3\), so they do not necessarily all lie inside the original domain.
OutputIterator CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::dual | ( | Cell_handle | c, |
int | i, | ||
int | j, | ||
OutputIterator | pts | ||
) | const |
same as the previous method for the edge (c,i,j)
.
OutputIterator CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::dual | ( | Vertex_handle | v, |
OutputIterator | pts | ||
) | const |
Returns in the output iterator the points of the dual polyhedron of the vertex v
in no particular order.
The points form the dual polyhedron in \( \mathbb R^3\), so they do not necessarily lie all inside the original domain.
Triple<OutputIteratorBoundaryFacets,OutputIteratorCells,OutputIteratorInternalFacets> CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::find_conflicts | ( | const Weighted_point & | p, |
Cell_handle | c, | ||
OutputIteratorBoundaryFacets | bfit, | ||
OutputIteratorCells | cit, | ||
OutputIteratorInternalFacets | ifit | ||
) | const |
Computes the conflict hole induced by p
.
The starting cell c
must be in conflict. Then this function returns respectively in the output iterators:
cit
: the cells in conflict.bfit
: the facets on the boundary, that is, the facets (t, i)
where the cell t
is in conflict, but t->neighbor(i)
is not.ifit
: the facets inside the hole, that is, delimiting two cells in conflict.Returns the Triple
composed of the resulting output iterators.
c
is in conflict with p
and p
lies in the original domain domain
. Its weight is non-negative and smaller than 1/64 times the squared cube edge length. Vertex_handle CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::insert | ( | const Weighted_point & | p, |
Cell_handle | start = Cell_handle() |
||
) |
Inserts the point p
in the triangulation and returns the corresponding vertex.
The optional argument start
is used as a starting place for the point location.
If this insertion creates a vertex, this vertex is returned.
If p
coincides with an existing vertex and has a greater weight, then the existing weighted point becomes hidden (see Periodic_3RegularTriangulationCellBase_3
) and p
replaces it as vertex of the triangulation.
If p
coincides with an already existing vertex (both point and weights being equal), then this vertex is returned and the triangulation remains unchanged.
Otherwise, if p
does not appear as a vertex of the triangulation, then it is stored as a hidden point and this method returns the default constructed handle.
p
lies in the original domain. Its weight is non-negative and smaller than 1/64 times the squared cube edge length. Vertex_handle CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::insert | ( | const Weighted_point & | p, |
Locate_type | lt, | ||
Cell_handle | loc, | ||
int | li, | ||
int | lj | ||
) |
Inserts point p
in the triangulation and returns the corresponding vertex.
Similar to the above insert()
function, but takes as additional parameter the return values of a previous location query. See description of Periodic_3_triangulation_3::locate()
.
p
lies in the original domain. Its weight is non-negative and smaller than 1/64 times the squared cube edge length. std::ptrdiff_t CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::insert | ( | InputIterator | first, |
InputIterator | last, | ||
bool | is_large_point_set = false |
||
) |
Inserts the points in the iterator range \( \left[\right.\)first
, last
\( \left.\right)\).
Returns the number of inserted points. This function uses spatial sorting (cf. chapter Spatial Sorting) and therefore is not guaranteed to insert the points following the order of InputIterator
. If the third argument is_large_point_set
is set to true
, a heuristic for optimizing the insertion of large point sets is applied.
value_type
of first
and last
are Weighted_point
s lying inside the original domain. Their weights are non-negative and smaller than 1/64 times the squared cube edge length. bool CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::is_valid | ( | bool | verbose = false | ) | const |
Checks the combinatorial validity of the triangulation and the validity of its geometric embedding (see Section Representation).
Also checks that the power spheres of all cells are regular.
When verbose
is set to true, messages describing the first invalidity encountered (if any) are printed.
bool CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::is_valid | ( | Cell_handle | c, |
bool | verbose = false |
||
) | const |
Checks the combinatorial and geometric validity of the cell (see Section Representation).
Also checks that its power sphere is regular.
When verbose
is set to true, messages are printed to give a precise indication of the kind of invalidity encountered (if any).
Vertex_handle CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::nearest_power_vertex | ( | const Bare_point & | p, |
Cell_handle | c = Cell_handle() |
||
) | const |
Returns the vertex of the triangulation which is nearest to \( p\) with respect to the power distance.
This means that the power of the query point p
with respect to the weighted point in the returned vertex is smaller than the power of p
with respect to the weighted point in any other vertex. Ties are broken arbitrarily. It always returns a vertex corresponding to a point inside domain
even if computing in a multiply sheeted covering space. The default constructed handle is returned if the triangulation is empty. The optional argument c
is a hint specifying where to start the search.
c
is a cell of rt
and p
lies in the original domain domain
. void CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::remove | ( | Vertex_handle | v | ) |
Removes the vertex v
from the triangulation.
When computing in the 27-sheeted covering space it removes all 27 copies of v
.
std::ptrdiff_t CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::remove | ( | InputIterator | first, |
InputIterator | beyond | ||
) |
Removes the vertices specified by the iterator range (first, beyond
) of value type Vertex_handle
.
remove()
is called for each element of the range. The number of vertices removed is returned; this number does not account for periodic copies of removed vertices.
Unique_vertex_iterator
. Bounded_side CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::side_of_power_sphere | ( | Cell_handle | c, |
const Weighted_point & | p, | ||
const Offset & | off = Offset(0, 0, 0) |
||
) | const |
Returns a value indicating the position of the (weighted point, offset) pair (p
,off
) with respect to the power sphere of c
.
More precisely, it returns:
ON_BOUNDED_SIDE
if the angle between the weighted point (p
,off
) and the power sphere of c
is larger than \( \pi/2\) or if the ball of (p
,off
) is included in the power sphere of c
.ON_BOUNDARY
if the ball (p
,off
) is orthogonal to the power sphere of c
.ON_UNBOUNDED_SIDE
if the angle between the weighted point (p
,off
) and the power sphere of c
is less than \( \pi/2\) or if the two balls do not intersect. OutputIterator CGAL::Periodic_3_regular_triangulation_3< PT, TDS >::vertices_in_conflict | ( | const Weighted_point & | p, |
Cell_handle | c, | ||
OutputIterator | res | ||
) | const |
Similar to find_conflicts()
, but reports the vertices that are on the boundary of the conflict hole of p
, in the output iterator res
.
Returns the resulting output iterator.
c
is in conflict with p
and p
lies in the original domain domain
. Its weight is non-negative and smaller than 1/64 times the squared cube edge length.