CGAL 5.1.3 - Algebraic Kernel
AlgebraicKernel_d_1::Isolate_1 Concept Reference

## Definition

Computes an open isolating interval for an AlgebraicKernel_d_1::Algebraic_real_1 with respect to the real roots of a given univariate polynomial.

Refines:
AdaptableBinaryFunction
AlgebraicKernel_d_1::ComputePolynomial_1

## Types

typedef std::pair< AlgebraicKernel_d_1::Bound, AlgebraicKernel_d_1::Boundresult_type

typedef AlgebraicKernel_d_1::Algebraic_real_1 first_argument_type

typedef AlgebraicKernel_d_1::Polynomial_1 second_argument_type

## Operations

result_type operator() (first_argument_type a, second_argument_type p)
Computes an open isolating interval $$I=(l,u)$$ for $$a$$ with respect to the real roots of $$p$$. More...

## ◆ operator()()

 result_type AlgebraicKernel_d_1::Isolate_1::operator() ( first_argument_type a, second_argument_type p )

Computes an open isolating interval $$I=(l,u)$$ for $$a$$ with respect to the real roots of $$p$$.

It is not required that $$a$$ is a root of $$p$$.

Postcondition
$$a \in I$$.
$$p(x) \neq0 | \forall x \in\overline{I}\backslash a$$.