CGAL 5.1.4 - Polynomial
|
Given numerator \( a\) and denominator \( b\) this AdaptableFunctor
translates a PolynomialTraits_d::Polynomial_d
\( p\) with respect to one variable by \( a/b\), that is, it computes \( b^{degree(p)}\cdot p(x+a/b)\).
Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as a univariate homogeneous polynomial in one specific variable.
Polynomial_d
PolynomialTraits_d
Types | |
typedef PolynomialTraits_d::Polynomial_d | result_type |
Operations | |
result_type | operator() (PolynomialTraits_d::Polynomial_d p, PolynomialTraits_d::Innermost_coefficient_type a, PolynomialTraits_d::Innermost_coefficient_type b) |
Returns \( b^{degree(p)}\cdot p(x+a/b)\), with respect to the outermost variable. | |
result_type | operator() (PolynomialTraits_d::Polynomial_d p, PolynomialTraits_d::Innermost_coefficient_type a, PolynomialTraits_d::Innermost_coefficient_type b, int i) |
Same as first operator but for variable \( x_i\). More... | |
result_type PolynomialTraits_d::TranslateHomogeneous::operator() | ( | PolynomialTraits_d::Polynomial_d | p, |
PolynomialTraits_d::Innermost_coefficient_type | a, | ||
PolynomialTraits_d::Innermost_coefficient_type | b, | ||
int | i | ||
) |
Same as first operator but for variable \( x_i\).