CGAL 5.2 - 2D and 3D Linear Geometry Kernel
|
AdaptableFunctor
(with four arguments)CGAL::Weighted_point_2<Kernel>
ComputePowerProduct_2
for the definition of orthogonality for power distances. PowerSideOfOrientedPowerCircle_2
Operations | |
CGAL::Bounded_side | operator() (const Kernel::Weighted_point_2 &p, const Kernel::Weighted_point_2 &q, const Kernel::Weighted_point_2 &r, const Kernel::Weighted_point_2 &t) |
Let \( {z(p,q,r)}^{(w)}\) be the power circle of the weighted points \( (p,q,r)\). More... | |
CGAL::Bounded_side | operator() (const Kernel::Weighted_point_2 &p, const Kernel::Weighted_point_2 &q, const Kernel::Weighted_point_2 &t) |
returns the sign of the power test of t with respect to the smallest circle orthogonal to p and q . More... | |
CGAL::Bounded_side | operator() (const Kernel::Weighted_point_2 &p, const Kernel::Weighted_point_2 &t) |
returns the sign of the power test of t with respect to the smallest circle orthogonal to p . | |
CGAL::Bounded_side Kernel::PowerSideOfBoundedPowerCircle_2::operator() | ( | const Kernel::Weighted_point_2 & | p, |
const Kernel::Weighted_point_2 & | q, | ||
const Kernel::Weighted_point_2 & | r, | ||
const Kernel::Weighted_point_2 & | t | ||
) |
Let \( {z(p,q,r)}^{(w)}\) be the power circle of the weighted points \( (p,q,r)\).
This method returns:
ON_BOUNDARY
if t
is orthogonal to \( {z(p,q,r)}^{(w)}\),ON_UNBOUNDED_SIDE
if t
lies outside the bounded circle of center \( z(p,q,r)\) and radius \( \sqrt{ w_{z(p,q,r)}^2 + w_t^2 }\) (which is equivalent to \( \Pi({t}^{(w)},{z(p,q,r)}^{(w)}) > 0\)),ON_BOUNDED_SIDE
if t
lies inside this bounded circle.The order of the points p
, q
, and r
does not matter.
p
, q
, and r
are not collinear.If all the points have a weight equal to 0, then power_side_of_bounded_power_circle_2(p,q,r,t)
== side_of_bounded_circle(p,q,r,t)
.
CGAL::Bounded_side Kernel::PowerSideOfBoundedPowerCircle_2::operator() | ( | const Kernel::Weighted_point_2 & | p, |
const Kernel::Weighted_point_2 & | q, | ||
const Kernel::Weighted_point_2 & | t | ||
) |
returns the sign of the power test of t
with respect to the smallest circle orthogonal to p
and q
.
p
and q
have different bare points.