CGAL 5.3  Polynomial

Computes the principal subresultant of two polynomials \( p\) and \( q\) of type PolynomialTraits_d::Coefficient_type
with respect to the outermost variable. The \( i\)th principal subresultant, \( \mathrm{sres}_i(p,q)\), is defined as the coefficient at \( t^i\) of the \( i\)th polynomial subresultant \( \mathrm{Sres}_i(p,q)\). Thus, it is either the leading coefficient of \( \mathrm{Sres}_i\), or zero in the case where its degree is below \( i\).
The result is written in an output range, starting with the \( 0\)th principal subresultant \( \mathrm{sres}_0(p,q)\) ,aka as the resultant of \( p\) and \( q\). (Note that \( \mathrm{sres}_0(p,q)=\mathrm{Sres}_0(p,q)\) by definition)
Operations  
template<typename OutputIterator >  
OutputIterator  operator() (Polynomial_d p, Polynomial_d q, OutputIterator out) 
computes the principal subresultants of \( p\) and \( q\), with respect to the outermost variable. More...  
template<typename OutputIterator >  
OutputIterator  operator() (Polynomial_d p, Polynomial_d q, OutputIterator out, int i) 
computes the principal subresultants of \( p\) and \( q\), with respect to the variable \( x_i\).  
OutputIterator PolynomialTraits_d::PrincipalSubresultants::operator()  (  Polynomial_d  p, 
Polynomial_d  q,  
OutputIterator  out  
) 
computes the principal subresultants of \( p\) and \( q\), with respect to the outermost variable.
Each element is of type PolynomialTraits_d::Coefficient_type
.