CGAL 5.4.1 - 3D Periodic Triangulations
|
The concept Periodic_3RegularTriangulationTraits_3
is the first template parameter of the class CGAL::Periodic_3_regular_triangulation_3
. It refines the concept RegularTriangulationTraits_3
from the CGAL 3D Triangulations. It redefines the geometric objects, predicates and constructions to work with point-offset pairs. In most cases the offsets will be (0,0,0) and the predicates from RegularTriangulationTraits_3
can be used directly. For efficiency reasons we maintain for each functor the version without offsets.
In addition to the requirements described for the traits class RegularTriangulationTraits_3, the geometric traits class of a periodic regular triangulation must fulfill the following requirements.
typedef unspecified_type | Power_side_of_oriented_power_sphere_3 |
A predicate object that must provide the function operators. More... | |
typedef unspecified_type | Compare_weighted_squared_radius_3 |
A predicate object that must provide the function operators: More... | |
typedef unspecified_type | Compare_power_distance_3 |
A predicate object, model of ComparePowerDistance_3 , that must provide the function operator. More... | |
When vertex removal is used, the traits class must in addition provide the following predicate object | |
typedef unspecified_type | Coplanar_orientation_3 |
A predicate object that must provide the function operators: More... | |
When | |
typedef unspecified_type | Power_side_of_bounded_power_sphere_3 |
A predicate object that must provide the function operator. More... | |
When the dual operations are used, the traits class must in addition provide the following constructor object: | |
typedef unspecified_type | Construct_weighted_circumcenter_3 |
A constructor object that must provide the function operator. More... | |
Operations | |
The following functions give access to the predicate and construction objects: | |
Power_side_of_oriented_power_sphere_3 | power_side_of_oriented_power_sphere_3_object () |
Compare_weighted_squared_radius_3 | compare_weighted_squared_radius_3_object () |
The following function must be provided if vertex removal is used; otherwise dummy functions can be provided. | |
Coplanar_orientation_3 | coplanar_3_orientation_3_object () |
The following function must be provided only if the methods of | |
Construct_weighted_circumcenter_3 | construct_weighted_circumcenter_3_object () |
A predicate object, model of ComparePowerDistance_3
, that must provide the function operator.
Comparison_result operator()(Point_3 p, Weighted_point_3 q, Weighted_point_3 r, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r)
,
which compares the power distance between (p,o_p)
and (q,o_q)
to the power distance between (p,o_p)
and (r,o_r)
.
nearest_power_vertex()
or nearest_power_vertex_in_cell()
is issued. A predicate object that must provide the function operators:
Orientation operator()(Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r, Weighted_point_3 s, FT w)
,
which compares the weight of the smallest sphere orthogonal to the input weighted points with the input weight w
and returns a SMALLER
, EQUAL
, or LARGER
.
p
, q
, r
, and s
lie inside the domain. A constructor object that must provide the function operator.
Weighted_point_3 operator()(Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r, Weighted_point_3 s, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r, Periodic_3_offset_3 o_s)
,
which constructs the weighted circumcenter of four point-offset pairs.
p
, q
, r
, s
lie inside the domain. p
, q
, r
and s
, as well as (p,o_p)
, (q,o_q)
, (r,o_r)
and (s,o_s)
must be non coplanar. A predicate object that must provide the function operators:
Orientation operator()(Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r)
,
which returns COLLINEAR
, if the points are collinear; otherwise it must return a consistent orientation for any three points chosen in a same plane and
Orientation operator()(Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r)
,
which is the same for point-offset pairs.
p
, q
, r
lie inside the domain. typedef unspecified_type Periodic_3RegularTriangulationTraits_3::Power_side_of_bounded_power_sphere_3 |
A predicate object that must provide the function operator.
Bounded_side operator()(Weighted_point_3 p, Weighted_point_3 t, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_t)
,
which returns the sign of the power test of (t,o_t)
with respect to the smallest sphere orthogonal to (p,o_p)
(which is the sphere with center (p,o_p)
and squared radius -w_p
with w_p
the weight of p
),
Bounded_side operator()(Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 t, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_t)
,
which returns the sign of the power test of (t,o_t)
with respect to the smallest sphere orthogonal to (p,o_p)
and (q,o_q)
,
Bounded_side operator()(Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r, Weighted_point_3 t, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r, Periodic_3_offset_3 o_q)
,
which returns the sign of the power test of (t,o_t)
with respect to the smallest sphere orthogonal to (p,o_p)
, (q,o_q)
, and (r,o_r)
.
typedef unspecified_type Periodic_3RegularTriangulationTraits_3::Power_side_of_oriented_power_sphere_3 |
A predicate object that must provide the function operators.
Oriented_side operator()(Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r, Weighted_point_3 s, Weighted_point_3 t, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r, Periodic_3_offset_3 o_s, Periodic_3_offset_3 o_t)
,
which determines the position of the point-offset pair (t,o_t)
with respect to the power sphere of the point-offset pairs (p,o_p), (q,o_q), (r,o_r), (s,o_s)
.
p
, q
, r
, s
, t
lie inside the domain and p, q, r, s
are not coplanar.When vertex removal is used, the predicate must in addition provide the function operators
Oriented_side operator()(Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r, Weighted_point_3 t, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r, Periodic_3_offset_3 o_t)
,
which has a definition similar to the previous method, for coplanar points, with the power circle of p,q,r
.
p
, q
, r
, t
lie inside the domain, p, q, r
are not collinear, and (p,o_p), (q,o_q), (r,o_r), (t,o_t)
are coplanar.Oriented_side operator()(Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 t, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_t)
,
which is the same for collinear points, and the power segment of (p,o_p)
and (q,o_q)
,
p
, q
, t
lie inside the domain, p
and q
have different Bare_points, and (p,o_p), (q,o_q), (t,o_t)
are collinear.Oriented_side operator()(Weighted_point_3 p, Weighted_point_3 q, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q)
,
which is the same for equal points, that is when (p,o_p)
and (q,o_q)
have equal coordinates, then it returns the comparison of the weights.
p
and q
lie inside the domain and have equal Bare_points.