CGAL 5.4.4 - Algebraic Kernel
|
Computes for a given pair of bivariate polynomials \( p_1\), \( p_2\) their common part \( g\) and coprime parts \( q_1\), \( q_2\) respectively.
That is, it computes \( g, q_1, q_2\) such that:
\( c_1 \cdot p_1 = g \cdot q_1\) for some constant \( c_1\) and
\( c_2 \cdot p_2 = g \cdot q_2\) for some constant \( c_2\), such that \( q_1\) and \( q_2\) are coprime.
AdaptableFunctor
with five argumentsAlgebraicKernel_d_2::IsCoprime_2
Types | |
typedef bool | result_type |
Operations | |
result_type | operator() (const AlgebraicKernel_d_2::Polynomial_2 &p1, const AlgebraicKernel_d_2::Polynomial_2 &p2, AlgebraicKernel_d_2::Polynomial_2 &g, AlgebraicKernel_d_2::Polynomial_2 &q1, AlgebraicKernel_d_2::Polynomial_2 &q2) |
Computes \( g, q_1, q_2\) as described above. More... | |
result_type AlgebraicKernel_d_2::MakeCoprime_2::operator() | ( | const AlgebraicKernel_d_2::Polynomial_2 & | p1, |
const AlgebraicKernel_d_2::Polynomial_2 & | p2, | ||
AlgebraicKernel_d_2::Polynomial_2 & | g, | ||
AlgebraicKernel_d_2::Polynomial_2 & | q1, | ||
AlgebraicKernel_d_2::Polynomial_2 & | q2 | ||
) |
Computes \( g, q_1, q_2\) as described above.
Returns whether \( p_1\) and \( p_2\) where already coprime.