CGAL 5.5.2 - Planar Parameterization of Triangulated Surface Meshes
|
#include <CGAL/Surface_mesh_parameterization/Mean_value_coordinates_parameterizer_3.h>
The class Mean_value_coordinates_parameterizer_3
implements Floater Mean Value Coordinates parameterization.
This method is sometimes called simply Floater parameterization [4].
This is a conformal parameterization, i.e. it attempts to preserve angles.
One-to-one mapping is guaranteed if the surface's border is mapped to a convex polygon.
This class is used by the main parameterization algorithm Fixed_border_parameterizer_3::parameterize()
.
BorderParameterizer_
and SolverTraits_
template parameters.compute_w_ij()
to compute w_ij
, the (i,j)
coefficient of matrix A
for j
neighbor vertex of i
based on Floater Mean Value Coordinates parameterization.is_one_to_one_mapping()
.TriangleMesh_ | must be a model of FaceGraph . |
BorderParameterizer_ | is a Strategy to parameterize the surface border and must be a model of Parameterizer_3 .Default: Circular_border_arc_length_parameterizer_3<TriangleMesh_> |
SolverTraits_ | must be a model of SparseLinearAlgebraTraits_d .Note that the system is not symmetric because Fixed_border_parameterizer_3 does not remove border vertices from the system.Default: If Eigen 3.1 (or greater) is available and CGAL_EIGEN3_ENABLED is defined, then an overload of Eigen_solver_traits is provided as default parameter: Eigen::BiCGSTAB<Eigen_sparse_matrix<double>::EigenType, Eigen::IncompleteLUT< double > > > |
CGAL::Surface_mesh_parameterization::Fixed_border_parameterizer_3<TriangleMesh, BorderParameterizer, SolverTraits>
Public Types | |
typedef Border_parameterizer_ | Border_parameterizer |
The border parameterizer. | |
typedef SolverTraits_ | Solver_traits |
Solver traits type. | |
typedef TriangleMesh_ | Triangle_mesh |
Triangle mesh type. | |
typedef boost::graph_traits< Triangle_mesh >::vertex_descriptor | vertex_descriptor |
Mesh vertex type. | |
typedef boost::graph_traits< Triangle_mesh >::halfedge_descriptor | halfedge_descriptor |
Mesh halfedge type. | |
Public Types inherited from CGAL::Surface_mesh_parameterization::Fixed_border_parameterizer_3< TriangleMesh_, Default::Get< BorderParameterizer_, Circular_border_arc_length_parameterizer_3< TriangleMesh_ > >::type, Default::Get< SolverTraits_, SolverTraits_ >::type > | |
typedef Border_parameterizer_ | Border_parameterizer |
Border parameterizer type. | |
typedef Default::Get< SolverTraits_, SolverTraits_ >::type | Solver_traits |
Solver traits type. | |
typedef TriangleMesh_ | Triangle_mesh |
Triangle mesh type. | |
typedef boost::graph_traits< Triangle_mesh >::vertex_descriptor | vertex_descriptor |
Mesh vertex type. | |
typedef boost::graph_traits< Triangle_mesh >::halfedge_descriptor | halfedge_descriptor |
Mesh halfedge type. | |
typedef Solver_traits::Vector | Vector |
Solver vector type. | |
typedef Solver_traits::Matrix | Matrix |
Solver matrix type. | |
Protected Member Functions | |
virtual NT | compute_w_ij (const Triangle_mesh &mesh, vertex_descriptor main_vertex_v_i, Vertex_around_target_circulator< Triangle_mesh > neighbor_vertex_v_j) const |
computes w_ij , the (i, j) -coefficient of matrix A for j neighbor vertex of i. More... | |
Protected Member Functions inherited from CGAL::Surface_mesh_parameterization::Fixed_border_parameterizer_3< TriangleMesh_, Default::Get< BorderParameterizer_, Circular_border_arc_length_parameterizer_3< TriangleMesh_ > >::type, Default::Get< SolverTraits_, SolverTraits_ >::type > | |
void | initialize_system_from_mesh_border (Matrix &A, Vector &Bu, Vector &Bv, const Triangle_mesh &mesh, halfedge_descriptor bhd, VertexUVmap uvmap, VertexIndexMap vimap) const |
initializes A , Bu and Bv after border parameterization. More... | |
Error_code | setup_inner_vertex_relations (Matrix &A, Vector &, Vector &, const Triangle_mesh &mesh, vertex_descriptor vertex, VertexIndexMap vimap) const |
Compute the line i of matrix A for i inner vertex: More... | |
Border_parameterizer & | get_border_parameterizer () |
Get the object that maps the surface's border onto a 2D space. | |
Solver_traits & | get_linear_algebra_traits () |
Get the sparse linear algebra (traits object to access the linear system). | |
CGAL::Surface_mesh_parameterization::Mean_value_coordinates_parameterizer_3< TriangleMesh_, BorderParameterizer_, SolverTraits_ >::Mean_value_coordinates_parameterizer_3 | ( | Border_parameterizer | border_param = Border_parameterizer() , |
Solver_traits | sparse_la = Solver_traits() |
||
) |
Constructor.
border_param | Object that maps the surface's border to 2D space. |
sparse_la | Traits object to access a sparse linear system. |
|
protectedvirtual |
computes w_ij
, the (i, j)
-coefficient of matrix A for j neighbor vertex of i.
mesh | a triangulated surface. |
main_vertex_v_i | the vertex of mesh with index i |
neighbor_vertex_v_j | the vertex of mesh with index j |
bool CGAL::Surface_mesh_parameterization::Mean_value_coordinates_parameterizer_3< TriangleMesh_, BorderParameterizer_, SolverTraits_ >::is_one_to_one_mapping | ( | const Triangle_mesh & | mesh, |
halfedge_descriptor | bhd, | ||
const VertexUVMap | uvmap | ||
) | const |
returns whether the 3D -> 2D mapping is one-to-one.
Theorem: A one-to-one mapping is guaranteed if all w_ij coefficients are > 0 (for j vertex neighbor of i) and if the surface border is mapped onto a 2D convex polygon. Here, all w_ij coefficients are positive (for j vertex neighbor of i), thus a valid embedding is guaranteed if the surface border is mapped onto a 2D convex polygon.