CGAL 5.6 - Geometric Object Generators
Loading...
Searching...
No Matches
CGAL::Random_points_in_tetrahedron_3< Point_3, Creator > Class Template Reference

#include <CGAL/point_generators_3.h>

Definition

template<typename Point_3, typename Creator>
class CGAL::Random_points_in_tetrahedron_3< Point_3, Creator >

The class Random_points_in_tetrahedron_3 is an input iterator creating points uniformly distributed inside a tetrahedron.

The default Creator is Creator_uniform_3<Kernel_traits<Point_3>::Kernel::RT,Point_3>.

Is Model Of:

InputIterator

PointGenerator

See also
CGAL::Random_points_on_segment_3<Point_3, Creator>
CGAL::Random_points_in_cube_3<Point_3, Creator>
CGAL::Random_points_in_triangle_3<Point_3, Creator>
CGAL::Random_points_on_sphere_3<Point_3, Creator>
Examples
Generator/random_points_tetrahedron_and_triangle_3.cpp.

Types

typedef std::input_iterator_tag iterator_category
 
typedef Point_3 value_type
 
typedef std::ptrdiff_t difference_type
 
typedef const Point_3pointer
 
typedef const Point_3reference
 
 Random_points_in_tetrahedron_3 (Point_3 &p, Point_3 &q, Point_3 &r, Point_3 &s, Random &rnd=get_default_random())
 Creates an input iterator g generating points of type Point_3 uniformly distributed inside the tetrahedron with vertices \( p, q, r \) and \( s \), i.e., \(*g = \alpha p + \beta q + \gamma r + \delta s \), for some \( \alpha, \beta, \gamma, \delta \in [0, 1] \) and \( \alpha + \beta + \gamma + \delta = 1 \).
 
 Random_points_in_tetrahedron_3 (Tetrahedron_3 &t, Random &rnd=get_default_random())
 Creates an input iterator g generating points of type Point_3 uniformly distributed inside a tetrahedron \(t\) with vertices \( p, q, r \) and \( s \), i.e., \(*g = \alpha p + \beta q + \gamma r + \delta s \), for some \( \alpha, \beta, \gamma, \delta \in [0, 1] \) and \( \alpha + \beta + \gamma + \delta = 1 \).
 

Constructor & Destructor Documentation

◆ Random_points_in_tetrahedron_3() [1/2]

template<typename Point_3 , typename Creator >
CGAL::Random_points_in_tetrahedron_3< Point_3, Creator >::Random_points_in_tetrahedron_3 ( Point_3 p,
Point_3 q,
Point_3 r,
Point_3 s,
Random rnd = get_default_random() 
)

Creates an input iterator g generating points of type Point_3 uniformly distributed inside the tetrahedron with vertices \( p, q, r \) and \( s \), i.e., \(*g = \alpha p + \beta q + \gamma r + \delta s \), for some \( \alpha, \beta, \gamma, \delta \in [0, 1] \) and \( \alpha + \beta + \gamma + \delta = 1 \).

Three random numbers are needed from rnd for each point.

◆ Random_points_in_tetrahedron_3() [2/2]

template<typename Point_3 , typename Creator >
CGAL::Random_points_in_tetrahedron_3< Point_3, Creator >::Random_points_in_tetrahedron_3 ( Tetrahedron_3 t,
Random rnd = get_default_random() 
)

Creates an input iterator g generating points of type Point_3 uniformly distributed inside a tetrahedron \(t\) with vertices \( p, q, r \) and \( s \), i.e., \(*g = \alpha p + \beta q + \gamma r + \delta s \), for some \( \alpha, \beta, \gamma, \delta \in [0, 1] \) and \( \alpha + \beta + \gamma + \delta = 1 \).

Three random numbers are needed from rnd for each point.