CGAL 5.6 - 2D and 3D Linear Geometry Kernel
|
AdaptableFunctor
Operations | |
A model of this concept must provide: | |
Kernel::FT | operator() (const Kernel::Point_3 &p, const Kernel::Point_3 &q, const Kernel::Point_3 &r, const Kernel::Point_3 &s) const |
returns an approximation of the signed dihedral angle in the tetrahedron pqrs of edge pq . | |
Kernel::FT Kernel::ComputeApproximateDihedralAngle_3::operator() | ( | const Kernel::Point_3 & | p, |
const Kernel::Point_3 & | q, | ||
const Kernel::Point_3 & | r, | ||
const Kernel::Point_3 & | s | ||
) | const |
returns an approximation of the signed dihedral angle in the tetrahedron pqrs
of edge pq
.
The sign is negative if orientation(p,q,r,s)
is CGAL::NEGATIVE
and positive otherwise. The angle is given in degrees.
p,q,r
and p,q,s
are not collinear.