CGAL 5.6 - Linear Cell Complex
Loading...
Searching...
No Matches
LinearCellComplex Concept Reference

Definition

The concept LinearCellComplex represents a linear cell complex in dimension d, in an ambient space of dimension d2. This is a model of the concept of GenericMap adding a requirement to ensure that each vertex of the map is associated with a model of CellAttributeWithPoint.

Refines
GenericMap
Has Models:

CGAL::Linear_cell_complex_for_combinatorial_map<d,d2,LCCTraits,Items,Alloc>

CGAL::Linear_cell_complex_for_generalized_map<d,d2,LCCTraits,Items,Alloc>

See also
LinearCellComplexItems
LinearCellComplexTraits

Types

typedef Traits::FT FT
 
typedef Traits::Point Point
 
typedef Traits::Vector Vector
 
typedef unspecified_type Vertex_attribute
 Type of 0-attributes, a model of CellAttributeWithPoint concept (a shortcut for Attribute_type<0>::type ).
 
typedef unspecified_type Vertex_attribute_descriptor
 Descriptor through 0-attributes (a shortcut for Attribute_descriptor<0>::type ).
 
typedef unspecified_type Vertex_attribute_const_descriptor
 Const descriptor through 0-attributes (a shortcut for Attribute_const_descriptor<0>::type ).
 
typedef unspecified_type Vertex_attribute_range
 Range of all the 0-attributes, a model of the Range concept (a shortcut for Attribute_range<0>::type ).
 
typedef unspecified_type Vertex_attribute_const_range
 Const range of all the 0-attributes, a model of the ConstRange concept a shortcut for Attribute_const_range<0>::type ).
 

Constants

static unsigned int ambient_dimension
 Ambient dimension, must be > 1.
 

Creation

 LinearCellComplex ()
 Default constructor creating an empty linear cell complex.
 

Range Access Member Functions

Vertex_attribute_rangevertex_attributes ()
 Returns a range of all the 0-attributes in this linear cell complex (a shortcut for attributes<0>()).
 
Vertex_attribute_const_rangevertex_attributes () const
 Returns a const range of all the 0-attributes in this linear cell complex (a shortcut for attributes<0>() const).
 

Access Member Functions

bool is_valid () const
 Returns true iff this linear cell complex is valid.
 
size_type number_of_vertex_attributes () const
 Returns the number of 0-attributes in this linear cell complex (a shortcut for number_of_attributes<0>()).
 
Vertex_attribute_descriptor vertex_attribute (Dart_descriptor d)
 Returns the 0-attribute associated with d.
 
Vertex_attribute_const_descriptor vertex_attribute (Dart_const_descriptor d)
 Returns the 0-attribute associated with d, when d is const.
 
Pointpoint_of_vertex_attribute (Vertex_attribute_descriptor v)
 Returns the point in the 0-attribute v.
 
const Pointpoint_of_vertex_attribute (Vertex_attribute_const_descriptor v) const
 Returns the point in the 0-attribute v, when v is const.
 
Pointpoint (Dart_descriptor d)
 Returns the point in the 0-attribute associated with d.
 
const Pointpoint (Dart_const_descriptor d) const
 Returns the point in the 0-attribute associated with d, when d is const.
 

Modifiers

Dart_descriptor create_dart (Vertex_attribute_descriptor v)
 Creates a new dart in this linear cell complex, sets its associated 0-attribute to v and returns the corresponding descriptor.
 
Dart_descriptor create_dart (const Point &apoint)
 Creates a new dart in this linear cell complex, creates a new 0-attribute initialized with apoint, sets the associated 0-attribute of the new dart to this new 0-attribute, and returns the corresponding descriptor.
 
template<typename T1 >
Vertex_attribute_descriptor create_vertex_attribute (T1 t1)
 Creates a new 0-attribute in this linear cell complex, and returns the corresponding descriptor (a shortcut for create_attribute<0>(t1)).
 
void erase_vertex_attribute (Vertex_attribute_descriptor v)
 Removes the 0-attribute pointed to by v from this linear cell complex (a shortcut for erase_attribute<0>(v)).
 
void set_vertex_attribute (Dart_descriptor d, Vertex_attribute_descriptor v)
 Associates the 0-attribute of all the darts of the 0-cell containing d to v (a shortcut for set_attribute<0>(d,v)).
 

Attributes management

void correct_invalid_attributes ()
 Correct the invalid attributes of the linear cell complex.
 

Operations

template<unsigned int i>
Point barycenter (Dart_const_descriptor d) const
 Returns the barycenter of the i-cell containing d.
 
template<unsigned int i>
Dart_descriptor insert_point_in_cell (Dart_descriptor d, Point p)
 Inserts a point, copy of p, in the i-cell containing d.
 
template<unsigned int i>
Dart_descriptor insert_barycenter_in_cell (Dart_descriptor d)
 Inserts a point in the barycenter of the i-cell containing d.
 
Dart_descriptor insert_dangling_cell_1_in_cell_2 (Dart_descriptor d, Point p)
 Inserts a 1-cell in the 2-cell containing d, the 1-cell being attached only by one of its vertex to the 0-cell containing d.
 

Constructions

Dart_descriptor make_segment (const Point &p0, const Point &p1)
 Creates an isolated segment in this linear cell complex (two darts linked by \( \beta_2\)) having p0, p1 as points.
 
Dart_descriptor make_triangle (const Point &p0, const Point &p1, const Point &p2)
 Creates an isolated triangle in this linear cell complex having p0, p1, p2 as points.
 
Dart_descriptor make_quadrangle (const Point &p0, const Point &p1, const Point &p2, const Point &p3)
 Creates an isolated quadrangle in this linear cell complex having p0, p1, p2, p3 as points.
 
Dart_descriptor make_tetrahedron (const Point &p0, const Point &p1, const Point &p2, const Point &p3)
 Creates an isolated tetrahedron in this linear cell complex having p0, p1,p2,p3 as points.
 
Dart_descriptor make_hexahedron (const Point &p0, const Point &p1, const Point &p2, const Point &p3, const Point &p4, const Point &p5, const Point &p6, const Point &p7)
 Creates an isolated hexahedron in this linear cell complex having p0, p1, p2, p3, p4, p5, p6, p7 as points.
 

Member Typedef Documentation

◆ Vertex_attribute_const_range

Const range of all the 0-attributes, a model of the ConstRange concept a shortcut for Attribute_const_range<0>::type ).

Iterator inner type is bidirectional iterator and value type is Vertex_attribute.

◆ Vertex_attribute_range

Range of all the 0-attributes, a model of the Range concept (a shortcut for Attribute_range<0>::type ).

Iterator inner type is bidirectional iterator and value type is Vertex_attribute.

Member Function Documentation

◆ barycenter()

template<unsigned int i>
Point LinearCellComplex::barycenter ( Dart_const_descriptor  d) const

Returns the barycenter of the i-cell containing d.

Precondition
1 \( \leq \) i \( \leq \) dimension and d \( \in \) darts().

◆ correct_invalid_attributes()

void LinearCellComplex::correct_invalid_attributes ( )

Correct the invalid attributes of the linear cell complex.

We can have invalid attribute either if we have called set_automatic_attributes_management(false) before to use some modification operations or if we have modified the combinatorial map by using low level operations.

The validation process of a linear cell complex validates its generic map (cf. correct_invalid_attributes()), and for each dart d having no vertex attribute, a new vertex attribute is created, with its Point initialized to CGAL::Origin, and all the darts of the 0-cell containing d are linked with the new attribute.

◆ create_dart()

Dart_descriptor LinearCellComplex::create_dart ( Vertex_attribute_descriptor  v)

Creates a new dart in this linear cell complex, sets its associated 0-attribute to v and returns the corresponding descriptor.

Precondition
v \( \in \) vertex_attributes().

◆ create_vertex_attribute()

template<typename T1 >
Vertex_attribute_descriptor LinearCellComplex::create_vertex_attribute ( T1  t1)

Creates a new 0-attribute in this linear cell complex, and returns the corresponding descriptor (a shortcut for create_attribute<0>(t1)).

Calls the constructor of Vertex_attribute having T1 as parameter. Overloads of this member function are defined that take from zero to nine arguments. With zero argument, create_vertex_attribute() creates a new 0-attribute by using the default constructor.

◆ erase_vertex_attribute()

void LinearCellComplex::erase_vertex_attribute ( Vertex_attribute_descriptor  v)

Removes the 0-attribute pointed to by v from this linear cell complex (a shortcut for erase_attribute<0>(v)).

Precondition
v \( \in \) vertex_attributes().

◆ insert_barycenter_in_cell()

template<unsigned int i>
Dart_descriptor LinearCellComplex::insert_barycenter_in_cell ( Dart_descriptor  d)

Inserts a point in the barycenter of the i-cell containing d.

Returns a descriptor on one dart of this cell.

Precondition
i \( \leq \) dimension \( \leq \) 2 and d \( \in \) darts().

If are_attributes_automatically_managed()==true, if i-attributes are non void, Attribute_type<i>::type::On_split(a,a') is called, with a the original i-attribute associated with d and a' each new i-attribute created during the operation.

Advanced

If are_attributes_automatically_managed()==false, non void attributes are not updated; thus the combinatorial map can be no more valid after this operation.

◆ insert_dangling_cell_1_in_cell_2()

Dart_descriptor LinearCellComplex::insert_dangling_cell_1_in_cell_2 ( Dart_descriptor  d,
Point  p 
)

Inserts a 1-cell in the 2-cell containing d, the 1-cell being attached only by one of its vertex to the 0-cell containing d.

The second vertex is associated with a new 0-attribute containing a copy of p as point. Returns a descriptor on one dart belonging to the new 0-cell.

Precondition
2 \( \leq \) dimension and d \( \in \) darts().
Advanced

If are_attributes_automatically_managed()==false, non void attributes are not updated; thus the combinatorial map can be no more valid after this operation.

◆ insert_point_in_cell()

template<unsigned int i>
Dart_descriptor LinearCellComplex::insert_point_in_cell ( Dart_descriptor  d,
Point  p 
)

Inserts a point, copy of p, in the i-cell containing d.

Returns a descriptor on one dart of this cell.

Precondition
i \( \leq \) dimension \( \leq \) 2 and d \( \in \) darts().

If are_attributes_automatically_managed()==true, if i-attributes are non void, Attribute_type<i>::type::On_split(a,a') is called, with a the original i-attribute associated with d and a' each new i-attribute created during the operation.

Advanced

If are_attributes_automatically_managed()==false, non void attributes are not updated; thus the combinatorial map can be no more valid after this operation.

◆ is_valid()

bool LinearCellComplex::is_valid ( ) const

Returns true iff this linear cell complex is valid.

A linear cell complex lcc is valid if it is a valid generic map (cf. GenericMap::is_valid()), and if for each dart descriptor d such that d \( \in \) darts(): vertex_attribute(d)!=null_descriptor.

◆ make_hexahedron()

Dart_descriptor LinearCellComplex::make_hexahedron ( const Point p0,
const Point p1,
const Point p2,
const Point p3,
const Point p4,
const Point p5,
const Point p6,
const Point p7 
)

Creates an isolated hexahedron in this linear cell complex having p0, p1, p2, p3, p4, p5, p6, p7 as points.

Returns a descriptor on the dart associated with p0, with edge [p0,p5] and belonging to the 2-cell having p0, p5, p6, p1 as points.

Precondition
dimension \( \geq \) 2.
Example of r=lcc.make_hexahedron(p0,p1,p2,p3,p4,p5,p6,p7), left for combinatorial map as combinatorial data-structure, right for generalized maps.

◆ make_quadrangle()

Dart_descriptor LinearCellComplex::make_quadrangle ( const Point p0,
const Point p1,
const Point p2,
const Point p3 
)

Creates an isolated quadrangle in this linear cell complex having p0, p1, p2, p3 as points.

Returns a descriptor on the dart associated with p0 and with edge [p0,p1].

Precondition
dimension \( \geq\) 1.
Example of r=lcc.make_quadrangle(p0,p1,p2,p3), left for combinatorial map as combinatorial data-structure, right for generalized maps.

◆ make_segment()

Dart_descriptor LinearCellComplex::make_segment ( const Point p0,
const Point p1 
)

Creates an isolated segment in this linear cell complex (two darts linked by \( \beta_2\)) having p0, p1 as points.

Returns a descriptor on the dart associated with p0.

Precondition
dimension \( \geq\) 2.
Example of r=lcc.make_segment(p0,p1), left for combinatorial map as combinatorial data-structure, right for generalized maps.

◆ make_tetrahedron()

Dart_descriptor LinearCellComplex::make_tetrahedron ( const Point p0,
const Point p1,
const Point p2,
const Point p3 
)

Creates an isolated tetrahedron in this linear cell complex having p0, p1,p2,p3 as points.

Returns a descriptor on the dart associated with p0, with edge [p0,p1] and belonging to the 2-cell having p0, p1, p2 as points.

Precondition
dimension \( \geq\) 2.
Example of r=lcc.make_tetrahedron(p0,p1,p2,p3), left for combinatorial map as combinatorial data-structure, right for generalized maps.

◆ make_triangle()

Dart_descriptor LinearCellComplex::make_triangle ( const Point p0,
const Point p1,
const Point p2 
)

Creates an isolated triangle in this linear cell complex having p0, p1, p2 as points.

Returns a descriptor on the dart associated with p0 and with edge [p0,p1].

Precondition
dimension \( \geq\) 1.
Example of r=lcc.make_triangle(p0,p1,p2), left for combinatorial map as combinatorial data-structure, right for generalized maps.

◆ set_vertex_attribute()

void LinearCellComplex::set_vertex_attribute ( Dart_descriptor  d,
Vertex_attribute_descriptor  v 
)

Associates the 0-attribute of all the darts of the 0-cell containing d to v (a shortcut for set_attribute<0>(d,v)).

Precondition
d \( \in \) darts() and v \( \in \) vertex_attributes().