CGAL 5.6.1 - Algebraic Kernel
|
Computes an isolating box for a given AlgebraicKernel_d_2::Algebraic_real_2
.
AdaptableFunctor
Types | |
typedef std::array< AlgebraicKernel_d_1::Bound, 4 > | result_type |
Operations | |
result_type | operator() (AlgebraicKernel_d_2::Algebraic_real_2 a, AlgebraicKernel_d_2::Polynomial_2 f) |
The returned std::array \( [xl,xu,yl,yu]\) represents an open isolating box \( B=(xl,xu)\times(yl,yu)\) for \( a\) with respect to \( f\). More... | |
result_type | operator() (AlgebraicKernel_d_2::Algebraic_real_2 a, AlgebraicKernel_d_2::Polynomial_2 f, AlgebraicKernel_d_2::Polynomial_2 g) |
The returned std::array \( [xl,xu,yl,yu]\) represents an open isolating box \( B=(xl,xu)\times(yl,yu)\) for \( a\) with respect to the common solutions of \( f\) and \( g\). More... | |
result_type AlgebraicKernel_d_2::Isolate_2::operator() | ( | AlgebraicKernel_d_2::Algebraic_real_2 | a, |
AlgebraicKernel_d_2::Polynomial_2 | f | ||
) |
The returned std::array
\( [xl,xu,yl,yu]\) represents an open isolating box \( B=(xl,xu)\times(yl,yu)\) for \( a\) with respect to \( f\).
result_type AlgebraicKernel_d_2::Isolate_2::operator() | ( | AlgebraicKernel_d_2::Algebraic_real_2 | a, |
AlgebraicKernel_d_2::Polynomial_2 | f, | ||
AlgebraicKernel_d_2::Polynomial_2 | g | ||
) |
The returned std::array
\( [xl,xu,yl,yu]\) represents an open isolating box \( B=(xl,xu)\times(yl,yu)\) for \( a\) with respect to the common solutions of \( f\) and \( g\).
It is not necessary that \( a\) is a common solution of \( f\) and \( g\).