CGAL 5.6 - 2D Arrangements
Arrangement_on_surface_2/spherical_insert.cpp
// Constructing an arrangement of arcs of great circles.
#include <list>
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Arrangement_on_surface_2.h>
#include <CGAL/Arr_geodesic_arc_on_sphere_traits_2.h>
#include <CGAL/Arr_spherical_topology_traits_2.h>
#include "arr_print.h"
typedef Geom_traits::Point_2 Point;
typedef Geom_traits::Curve_2 Curve;
int main() {
// Construct the arrangement from 12 geodesic arcs.
Geom_traits traits;
Arrangement arr(&traits);
auto ctr_p = traits.construct_point_2_object();
auto ctr_cv = traits.construct_curve_2_object();
// Observe that the identification curve is a meridian that contains the
// point (-11, 7, 0). The curve (-1,0,0),(0,1,0) intersects the identification
// curve.
std::list<Curve> arcs;
arcs.push_back(ctr_cv(ctr_p(1, 0, 0), ctr_p(0, 0, -1)));
arcs.push_back(ctr_cv(ctr_p(1, 0, 0), ctr_p(0, 0, 1)));
arcs.push_back(ctr_cv(ctr_p(0, 1, 0), ctr_p(0, 0, -1)));
arcs.push_back(ctr_cv(ctr_p(0, 1, 0), ctr_p(0, 0, 1)));
arcs.push_back(ctr_cv(ctr_p(-1, 0, 0), ctr_p(0, 0, -1)));
arcs.push_back(ctr_cv(ctr_p(-1, 0, 0), ctr_p(0, 0, 1)));
arcs.push_back(ctr_cv(ctr_p(0, -1, 0), ctr_p(0, 0, -1)));
arcs.push_back(ctr_cv(ctr_p(0, -1, 0), ctr_p(0, 0, 1)));
arcs.push_back(ctr_cv(ctr_p(1, 0, 0), ctr_p(0, 1, 0)));
arcs.push_back(ctr_cv(ctr_p(1, 0, 0), ctr_p(0, -1, 0)));
arcs.push_back(ctr_cv(ctr_p(-1, 0, 0), ctr_p(0, 1, 0)));
arcs.push_back(ctr_cv(ctr_p(-1, 0, 0), ctr_p(0, -1, 0)));
CGAL::insert(arr, arcs.begin(), arcs.end());
print_arrangement_size(arr); // print the arrangement size
// print_arrangement(arr);
return 0;
}