CGAL 5.6 - Polynomial
|
Computes the polynomial subresultant of two polynomials \( p\) and \( q\) of type PolynomialTraits_d::Polynomial_d
with respect to outermost variable. Let \( p=\ccSum{i=0,\ldots,n}{} p_i x^i\) and \( q=\ccSum{i=0,\ldots,m}{} q_i x^i\), where \( x\) is the outermost variable. The \( i\)-th subresultant (with \( i=0,\ldots,\min\{n,m\}\)) is defined by.
\[ \mathrm{Sres}_{i}(p,q) = \det \begin{pmatrix} p_{n} & \dots & & \dots & p_{2i-m+2} & x^{m-i-1}p \\ & \ddots & & & \vdots & \vdots\\ & & p_{n} & \dots & p_{i+1} & p \\ q_{m} & \dots & & \dots & q_{2i-n+2} & x^{n-i-1}q \\ & \ddots & & & \vdots & \vdots\\ & & q_{m} & \dots & q_{i+1} & q \end{pmatrix} \]
where \( p_i\) and \( q_i\) are set to zero if \( i<0\). In the case that \( n=m\), \( \mathrm{Sres_n}\) is set to \( q\).
The result is written in an output range, starting with the \( 0\)-th subresultant \( \mathrm{Sres}_0(p,q)\) (aka as the resultant of \( p\) and \( q\)).
Operations | |
template<typename OutputIterator > | |
OutputIterator | operator() (Polynomial_d p, Polynomial_d q, OutputIterator out) |
computes the polynomial subresultants of \( p\) and \( q\), with respect to the outermost variable. More... | |
template<typename OutputIterator > | |
OutputIterator | operator() (Polynomial_d p, Polynomial_d q, OutputIterator out, int i) |
computes the polynomial subresultants of \( p\) and \( q\), with respect to the variable \( x_i\). | |
OutputIterator PolynomialTraits_d::PolynomialSubresultants::operator() | ( | Polynomial_d | p, |
Polynomial_d | q, | ||
OutputIterator | out | ||
) |
computes the polynomial subresultants of \( p\) and \( q\), with respect to the outermost variable.
Each element is of type PolynomialTraits_d::Polynomial_d
.