CGAL 5.6 - dD Triangulations
|
This concept describes the geometric types and predicates required to build a regular triangulation. It corresponds to the first template parameter of the class CGAL::Regular_triangulation<RegularTriangulationTraits_, TriangulationDataStructure_>
.
TriangulationTraits
CGAL::Epick_d<Dim>
CGAL::Epeck_d<Dim>
TriangulationTraits
Types | |
typedef unspecified_type | FT |
A number type that is a model for FieldNumberType . | |
typedef unspecified_type | Weighted_point_d |
The weighted point type. | |
typedef unspecified_type | Construct_point_d |
A function object that must provide the operator Point_d operator()(const Weighted_point_d & wp) , returning wp without its weight. | |
typedef unspecified_type | Compute_weight_d |
A function object that must provide the operator FT operator()(const Weighted_point_d & wp) , returning the weight of wp . | |
typedef unspecified_type | Power_side_of_power_sphere_d |
A predicate object that must provide the templated operator template<typename ForwardIterator> Oriented_side operator()(ForwardIterator start, ForwardIterator end, const Weighted_point_d & p) . More... | |
typedef unspecified_type | In_flat_power_side_of_power_sphere_d |
A predicate object that must provide the templated operator template<typename ForwardIterator> Oriented_side operator()(Flat_orientation_d orient, ForwardIterator start, ForwardIterator end, const Weighted_point_d & p) . More... | |
Creation | |
RegularTriangulationTraits () | |
The default constructor (optional). More... | |
Operations | |
The following methods permit access to the traits class's predicates and functors: | |
Construct_point_d | construct_point_d_object () const |
Compute_weight_d | compute_weight_d_object () const |
Power_side_of_power_sphere_d | power_side_of_power_sphere_d_object () const |
In_flat_power_side_of_power_sphere_d | in_flat_power_side_of_power_sphere_d_object () const |
A predicate object that must provide the templated operator template<typename ForwardIterator> Oriented_side operator()(Flat_orientation_d orient, ForwardIterator start, ForwardIterator end, const Weighted_point_d & p)
.
The points in range [start,end)
and p
are supposed to belong to the lower-dimensional flat whose orientation is given by orient
.
Let \( S \) be the power sphere of the weighted points in range [start,end)
in this lower dimensional flat. The operator returns:
ON_ORIENTED_BOUNDARY
if p
is orthogonal to \( S \),ON_NEGATIVE_SIDE
if the power distance between p
and \( S \) is positive.ON_POSITIVE_SIDE
otherwise.std::distance(start,end)=k+1
where \( k\) is the number of points used to construct orient
(dimension of the flat). The points in range [start,end)
must be affinely independent. p
must be in the flat generated by these points. A predicate object that must provide the templated operator template<typename ForwardIterator> Oriented_side operator()(ForwardIterator start, ForwardIterator end, const Weighted_point_d & p)
.
Let \( S \) be the power sphere of the weighted points in range [start,end)
. The operator returns:
ON_ORIENTED_BOUNDARY
if p
is orthogonal to \( S \),ON_NEGATIVE_SIDE
if the power distance between p
and \( S \) is positive.ON_POSITIVE_SIDE
otherwise.Dimension
is CGAL::Dimension_tag<D>
, then std::distance(start,end)=D+1
. The weighted points in range [start,end)
must be affinely independent, i.e., the simplex must not be flat. RegularTriangulationTraits::RegularTriangulationTraits | ( | ) |
The default constructor (optional).
This is not required when an instance of the traits is provided to the constructor of CGAL::Regular_triangulation
.