Loading [MathJax]/extensions/TeX/AMSsymbols.js
 
CGAL 6.0 - 2D and 3D Linear Geometry Kernel
All Classes Namespaces Files Functions Variables Typedefs Enumerations Friends Modules Pages
Loading...
Searching...
No Matches
CGAL::Line_3< Kernel > Class Template Reference

#include <CGAL/Line_3.h>

Definition

template<typename Kernel>
class CGAL::Line_3< Kernel >

An object l of the data type Line_3 is a directed straight line in the three-dimensional Euclidean space \( \E^3\).

Is model of
Kernel::Line_3

Creation

 Line_3 (const Point_3< Kernel > &p, const Point_3< Kernel > &q)
 introduces a line l passing through the points p and q.
 
 Line_3 (const Point_3< Kernel > &p, const Direction_3< Kernel > &d)
 introduces a line l passing through point p with direction d.
 
 Line_3 (const Point_3< Kernel > &p, const Vector_3< Kernel > &v)
 introduces a line l passing through point p and oriented by v.
 
 Line_3 (const Segment_3< Kernel > &s)
 returns the line supporting the segment s, oriented from source to target.
 
 Line_3 (const Ray_3< Kernel > &r)
 returns the line supporting the ray r, with the same orientation.
 

Operations

bool operator== (const Line_3< Kernel > &h) const
 Test for equality: two lines are equal, iff they have a non empty intersection and the same direction.
 
bool operator!= (const Line_3< Kernel > &h) const
 Test for inequality.
 
Point_3< Kernelprojection (const Point_3< Kernel > &p) const
 returns the orthogonal projection of p on l.
 
Point_3< Kernelpoint (const Kernel::FT i) const
 returns an arbitrary point on l.
 

Predicates

bool is_degenerate () const
 returns true iff line l is degenerated to a point.
 
bool has_on (const Point_3< Kernel > &p) const
 returns true iff p lies on l.
 

Miscellaneous

Plane_3< Kernelperpendicular_plane (const Point_3< Kernel > &p) const
 returns the plane perpendicular to l passing through p.
 
Line_3< Kernelopposite () const
 returns the line with opposite direction.
 
Vector_3< Kernelto_vector () const
 returns a vector having the same direction as l.
 
Direction_3< Kerneldirection () const
 returns the direction of l.
 
Line_3< Kerneltransform (const Aff_transformation_3< Kernel > &t) const
 returns the line obtained by applying t on a point on l and the direction of l.
 

Constructor & Destructor Documentation

◆ Line_3() [1/3]

template<typename Kernel >
CGAL::Line_3< Kernel >::Line_3 ( const Point_3< Kernel > &  p,
const Point_3< Kernel > &  q 
)

introduces a line l passing through the points p and q.

Line l is directed from p to q.

◆ Line_3() [2/3]

template<typename Kernel >
CGAL::Line_3< Kernel >::Line_3 ( const Point_3< Kernel > &  p,
const Direction_3< Kernel > &  d 
)

introduces a line l passing through point p with direction d.

Exactness
This construction is trivial and therefore always exact in Exact_predicates_inexact_constructions_kernel.

◆ Line_3() [3/3]

template<typename Kernel >
CGAL::Line_3< Kernel >::Line_3 ( const Point_3< Kernel > &  p,
const Vector_3< Kernel > &  v 
)

introduces a line l passing through point p and oriented by v.

Exactness
This construction is trivial and therefore always exact in Exact_predicates_inexact_constructions_kernel.

Member Function Documentation

◆ direction()

template<typename Kernel >
Direction_3< Kernel > CGAL::Line_3< Kernel >::direction ( ) const

returns the direction of l.

Exactness
This construction is trivial and therefore always exact in Exact_predicates_inexact_constructions_kernel.

◆ opposite()

template<typename Kernel >
Line_3< Kernel > CGAL::Line_3< Kernel >::opposite ( ) const

returns the line with opposite direction.

Exactness
This construction is trivial and therefore always exact in Exact_predicates_inexact_constructions_kernel.

◆ point()

template<typename Kernel >
Point_3< Kernel > CGAL::Line_3< Kernel >::point ( const Kernel::FT  i) const

returns an arbitrary point on l.

It holds point(i) = point(j), iff i=j.

◆ to_vector()

template<typename Kernel >
Vector_3< Kernel > CGAL::Line_3< Kernel >::to_vector ( ) const

returns a vector having the same direction as l.

Exactness
This construction is trivial and therefore always exact in Exact_predicates_inexact_constructions_kernel.